題目列表(包括答案和解析)
(湖北卷理3文4)用與球心距離為的平面去截球,所得的截面面積為
,則球的體積為
A. B.
C.
D.
(湖北卷理3文4)用與球心距離為的平面去截球,所得的截面面積為
,則球的體積為
A. B.
C.
D.
(14分)已知函數(shù)f(x)=在定義域內(nèi)為奇函數(shù),
且f(1)=2,f()=
;
(1)確定函數(shù)的解析式;
(2)用定義證明f(x)在[1,+∞)上是增函數(shù);
|
請(qǐng)按照題號(hào)在各題的答題區(qū)域(黑色線框)內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效。
| |||
| |||
第Ⅰ卷
一、選擇題:本大題共12小題,每小題5分,滿分60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
1.已知函數(shù)的定義域?yàn)?sub>
,
的定義域?yàn)?sub>
,則
空集
2.已知復(fù)數(shù),則它的共軛復(fù)數(shù)等于
3.設(shè)變量、
滿足線性約束條件
,則目標(biāo)函數(shù)
的最小值為
6
7
8
23
必須用黑色字跡鋼筆或簽字筆作答,答案必須寫在答題卷各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答的答案無(wú)效。
第Ⅰ卷 選擇題(共50分)
一、選擇題(本大題共10小題,每小題5分,滿分50分)
1、設(shè)全集U={
是不大于9的正整數(shù)},
{1,2,3 },
{3,4,5,6}則圖中陰影部分所表示的集合為( )
A.{1,2,3,4,5,6} B. {7,8,9}
C.{7,8} D. {1,2,4,5,6,7,8,9}
2、計(jì)算復(fù)數(shù)(1-i)2-等于( )
A.0 B.2 C. 4i D. -4i
一.選擇題:CDDA DDBA BBDC .
二.填空題:(13)60,(14),(15)
,(16)①②④
.
三.解答題:
(17)解:(Ⅰ)∵
.
………3分
∴令, ………4分
∴的遞減區(qū)間是
,
;
………5分
令,
………6分
∴的遞增區(qū)間是
,
.
………7分
(Ⅱ)∵,∴
,
………8分
又,所以,根據(jù)單位圓內(nèi)的三角函數(shù)線
可得.
………10分
(18)解:由題意,
………1分
,
………2分
,
………4分
,
………6分
,
………8分
所以
的分布列為:
…
………9分
.
………12分
(19)解:(Ⅰ)由題設(shè)可知,.
………1分
∵,
,
∴,
………3分
∴
,
………5分
∴ .
………6分
(Ⅱ)設(shè).
………7分
顯然,時(shí),
,
………8分
又, ∴當(dāng)
時(shí),
,∴
,
當(dāng)時(shí),
,∴
,
………9分
當(dāng)時(shí),
,∴
,
………10分
當(dāng)時(shí),
恒成立,
∴恒成立,
………11分
∴存在,使得
.
………12分
(20)解:(Ⅰ)∵PA⊥平面ABCD,PC⊥AD,∴AC⊥AD. ………1分
設(shè)AB=1,則AC=,CD=2.
………2分
設(shè)F是AC與BD的交點(diǎn),∵ABCD為梯形,
∴△ABF~△CDF, ∴DF:FB=2:1, ………3分
又PE:EB=2:1,∴DF:FB=PE:EB,∴EF∥PD, ………5分
又EF在平面ACE內(nèi),∴PD∥平面ACE. ………6分
(Ⅱ)以A為坐標(biāo)原點(diǎn),AB為y軸,AP為z軸建立空間直角坐標(biāo)系,如圖.
設(shè)AB=1,則,
,
,
,
………7分
則,
,
,
, ………8分
設(shè),∵
,
,∴
, …9分
設(shè),∵
,
,∴
, …10分
∴
, ………11分
∴二面角A-EC-P的大小為.………12分
注:學(xué)生使用其它解法應(yīng)同步給分.
(21)解:(Ⅰ)設(shè)所求的橢圓E的方程為,
………1分
、
,將
代入橢圓得
, ………2分
∵,又
,∴
,
………3分
∴, ………4分,
,
………5分
∴所求的橢圓E的方程為.
………6分
(Ⅱ)設(shè)、
,則
,
,
………7分
又設(shè)MN的中點(diǎn)為,則以上兩式相減得:
,
………8分
∴,………9分,
,
………10分
又點(diǎn)在橢圓內(nèi),∴
,
………11分
即,,∴
.
………12分
注:學(xué)生使用其它解法應(yīng)同步給分.
(22)解:(Ⅰ)∵,
……2分
∵,
∴時(shí),
遞增,
時(shí),
遞減,
時(shí),
遞增,
所以的極大值點(diǎn)為
,極小值點(diǎn)為
,
……4分
(的圖像如右圖,供評(píng)卷老師參考)
所以,的最小值是
.
……6分
(II)由(Ⅰ)知在
的值域是:
當(dāng)時(shí),為
,當(dāng)
時(shí),為
.
……8分
而在
的值域是為
,
……9分
所以,當(dāng)時(shí),令
,并解得
,
當(dāng)時(shí),令
,無(wú)解.
因此,的取值范圍是
.
……12分
注:學(xué)生使用其它解法應(yīng)同步給分.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com