亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    C. 查看更多

     

    題目列表(包括答案和解析)


    C.選修4—4:坐標(biāo)系與參數(shù)方程
    (本小題滿分10分)
    在極坐標(biāo)系中,圓的方程為,以極點為坐標(biāo)原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),判斷直線和圓的位置關(guān)系.

    查看答案和解析>>

    C選修4-4:坐標(biāo)系與參數(shù)方程(本小題滿分10分)
    在平面直角坐標(biāo)系中,求過橢圓為參數(shù))的右焦點且與直線為參數(shù))平行的直線的普通方程。

    查看答案和解析>>

    C.(選修4—4:坐標(biāo)系與參數(shù)方程)

    在極坐標(biāo)系中,圓的方程為,以極點為坐標(biāo)原點,極軸為軸的正

    半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),求直線

    得的弦的長度.

     

    查看答案和解析>>

    C(坐標(biāo)系與參數(shù)方程選做題)已知極坐標(biāo)的極點在直角坐標(biāo)系的原點O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為為參數(shù)),直線l的極坐標(biāo)方程為.點P在曲線C上,則點P到直線l的距離的最小值為                

     

    查看答案和解析>>

    C.選修4-4:坐標(biāo)系與參數(shù)方程

    在直角坐標(biāo)系中,已知曲線的參數(shù)方程是是參數(shù)),若以為極點,軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長度,建立極坐標(biāo)系,求曲線的極坐標(biāo)方程.

     

     

     

    查看答案和解析>>

     

    一:選擇題:BCAAD   CCCBA  CC

     

    二:填空題:

          <td id="rjvax"><strong id="rjvax"></strong></td>
        • <style id="n9evu"></style>
        • 20090109

          三:解答題

          17.解:(1)由已知

             ∴ 

             ∵  

          ∴CD⊥AB,在Rt△BCD中BC2=BD2+CD2,                                                  

              又CD2=AC2-AD2, 所以BC2=BD2+AC2-AD2=49,                                               

          所以                                                                                    

          (2)在△ABC中,   

                      

                  

               而   

          如果,

              

                                                                             

                                            

          18.解:(1)點A不在兩條高線上,

           不妨設(shè)AC邊上的高:,AB邊上的高:

          所以AC,AB的方程為:,

          ,即

          ,

          由此可得直線BC的方程為:

          (2),

          由到角公式得:,

          同理可算,。

          19.解:(1)令

             則,因

          故函數(shù)上是增函數(shù),

          時,,即

             (2)令

              則

              所以在(,―1)遞減,(―1,0)遞增,

          (0,1)遞減,(1,)遞增。

          處取得極小值,且

          故存在,使原方程有4個不同實根。

          20.解(1)連結(jié)FO,F是AD的中點,

          *  OFAD,

          EO平面ABCD

          由三垂線定理,得EFAD,

          AD//BC,

          EFBC                          

          連結(jié)FB,可求得FB=PF=,則EFPB,

          PBBC=B,

           EF平面PBC。 

          (2)連結(jié)BD,PD平面ABCD,過點E作EOBD于O,

          連結(jié)AO,則EO//PD

          且EO平面ABCD,所以AEO為異面直線PD、AE所成的角              

          E是PB的中點,則O是BD的中點,且EO=PD=1

          在Rt△EOA中,AO=

             所以:異面直線PD與AE所成的角的大小為

          (3)取PC的中點G,連結(jié)EG,F(xiàn)G,則EG是FG在平面PBC內(nèi)的射影

          * PD平面ABCD,

          * PDBC,又DCBC,且PDDC=D,

          BC平面PDC

          * BCPC,

          EG//BC,則EGPC,

          FGPC

          所以FGE是二面角F―PC―B的平面角                                   

          在Rt△FEG中,EG=BC=1,GF=

          ,

          所以二面角F―PC―B的大小為   

          21.解(1), 

          ,

             ,令

          所以遞增

          ,可得實數(shù)的取值范圍為

          (2)當(dāng)時,

             所以:,

          即為 

          可化為

          由題意:存在,時,

          恒成立

          ,

          只要

           

          所以:,

          ,知

          22.證明:(1)由已知得

            

          (2)由(1)得

          =

           

            1. <small id="n9evu"><tbody id="n9evu"></tbody></small>
              <source id="n9evu"></source>