亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    [評析]是函數(shù)單調(diào)遞增的充分不必要條件. 查看更多

     

    題目列表(包括答案和解析)

    在數(shù)列中,

    (Ⅰ)求、、并推測;

    (Ⅱ)用數(shù)學(xué)歸納法證明你的結(jié)論.

    【解析】第一問利用遞推關(guān)系可知,、、,猜想可得

    第二問中,①當(dāng)時,=,又,猜想正確

    ②假設(shè)當(dāng)時猜想成立,即

    當(dāng)時,

    =

    =,即當(dāng)時猜想也成立

    兩步驟得到。

    (2)①當(dāng)時,=,又,猜想正確

    ②假設(shè)當(dāng)時猜想成立,即,

    當(dāng)時,

    =

    =,即當(dāng)時猜想也成立

    由①②可知,對于任何正整數(shù)都有成立

     

    查看答案和解析>>

    已知函數(shù)y=x²-3x+c的圖像與x恰有兩個公共點,則c=

    (A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1

    【解析】若函數(shù)的圖象與軸恰有兩個公共點,則說明函數(shù)的兩個極值中有一個為0,函數(shù)的導(dǎo)數(shù)為,令,解得,可知當(dāng)極大值為,極小值為.由,解得,由,解得,所以,選A.

     

    查看答案和解析>>

    已知

    (1)求的單調(diào)區(qū)間;

    (2)證明:當(dāng)時,恒成立;

    (3)任取兩個不相等的正數(shù),且,若存在使成立,證明:

    【解析】(1)g(x)=lnx+,=        (1’)

    當(dāng)k0時,>0,所以函數(shù)g(x)的增區(qū)間為(0,+),無減區(qū)間;

    當(dāng)k>0時,>0,得x>k;<0,得0<x<k∴增區(qū)間(k,+)減區(qū)間為(0,k)(3’)

    (2)設(shè)h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 當(dāng)x變化時,h(x),的變化情況如表

    x

    1

    (1,e)

    e

    (e,+)

     

    0

    +

    h(x)

    e-2

    0

    所以h(x)0, ∴f(x)2x-e                    (5’)

    設(shè)G(x)=lnx-(x1) ==0,當(dāng)且僅當(dāng)x=1時,=0所以G(x) 為減函數(shù), 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,綜上,當(dāng)x1時, 2x-ef(x)恒成立.

    (3) ∵=lnx+1∴l(xiāng)nx0+1==∴l(xiāng)nx0=-1      ∴l(xiāng)nx0 –lnx=-1–lnx===(10’)  設(shè)H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t) <H(1)=0∵=

    ∴l(xiāng)nx0 –lnx>0, ∴x0 >x

     

    查看答案和解析>>

    已知函數(shù)的圖象過坐標(biāo)原點O,且在點處的切線的斜率是.

    (Ⅰ)求實數(shù)的值; 

    (Ⅱ)求在區(qū)間上的最大值;

    (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

    【解析】第一問當(dāng)時,,則。

    依題意得:,即    解得

    第二問當(dāng)時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

    第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

    不妨設(shè),則,顯然

    是以O(shè)為直角頂點的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

    若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

    (Ⅰ)當(dāng)時,,則。

    依題意得:,即    解得

    (Ⅱ)由(Ⅰ)知,

    ①當(dāng)時,,令

    當(dāng)變化時,的變化情況如下表:

    0

    0

    +

    0

    單調(diào)遞減

    極小值

    單調(diào)遞增

    極大值

    單調(diào)遞減

    ,!上的最大值為2.

    ②當(dāng)時, .當(dāng)時, ,最大值為0;

    當(dāng)時, 上單調(diào)遞增!最大值為。

    綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

    當(dāng)時,即時,在區(qū)間上的最大值為。

    (Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

    不妨設(shè),則,顯然

    是以O(shè)為直角頂點的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

    若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

    ,則代入(*)式得:

    ,而此方程無解,因此。此時,

    代入(*)式得:    即   (**)

     ,則

    上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

    ∴對于,方程(**)總有解,即方程(*)總有解。

    因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上

     

    查看答案和解析>>

    函數(shù)是定義在上的奇函數(shù),且

    (1)求實數(shù)a,b,并確定函數(shù)的解析式;

    (2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;

    (3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

    【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運用。第一問中,利用函數(shù)是定義在上的奇函數(shù),且。

    解得,

    (2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。

    (3)中,由2知,單調(diào)減區(qū)間為,并由此得到當(dāng),x=-1時,,當(dāng)x=1時,

    解:(1)是奇函數(shù),。

    ,,………………2分

    ,又,,,

    (2)任取,且,

    ,………………6分

    ,

    ,,

    在(-1,1)上是增函數(shù)!8分

    (3)單調(diào)減區(qū)間為…………………………………………10分

    當(dāng),x=-1時,,當(dāng)x=1時,。

     

    查看答案和解析>>


    同步練習(xí)冊答案