題目列表(包括答案和解析)
本題滿分7分)已知關(guān)于的不等式
(1)當(dāng)時,解該不等式
(2)若不等式對一切實數(shù)恒成立,求
的取值范圍. 高.考.資.源.網(wǎng)
(本題滿分7分)
已知直線:
與
軸和
軸分別交于
兩點(diǎn),直線
經(jīng)過點(diǎn)
且與直線
垂直,垂足為
.
(Ⅰ)求直線的方程與點(diǎn)
的坐標(biāo);
(Ⅱ)若將四邊形(
為坐標(biāo)原點(diǎn))繞
軸旋轉(zhuǎn)一周得到一幾何體,求該幾何體的體積
.
(本題滿分7分)
已知是第三象限角,且
.
(1)求的值;
(2)設(shè)的終邊與單位圓交于點(diǎn)
,求點(diǎn)
的坐標(biāo).
(本題滿分7分)
已知向量,
,
.
(Ⅰ)求的值;
(Ⅱ)設(shè)向量,
,求向量
與
夾角的余弦值.
(本題滿分7分)
已知函數(shù).
(Ⅰ)若方程有兩個不相等的實數(shù)根,求實數(shù)
的取值范圍;
(Ⅱ)若關(guān)于的不等式
的解集為
,且
,求實數(shù)
的取值范圍.
一、選擇題
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
B
B
A
B
D
B
C
C
A
B
C
A
C
D
C
二、填空題
16.;17.
;18等邊三角形;19.3;20.①②④
三、解答題
21解(I)由題意及正弦定理,得
①,
②,………………1分
兩式相減,得. …………………2分
(II)由的面積
,得
,……4分
由余弦定理,得
……………5分
所以. …………6分
22 .解:(Ⅰ)
……2分
(Ⅱ)
∴數(shù)列從第10項開始小于0
……4分
(Ⅲ)
23解:(Ⅰ)由得
即:
∴…………2分
而又
而…………4分
(Ⅱ)利用余弦定理可解得:
,∵
,故有
或
…………7分
24解:(I)設(shè)等比數(shù)列{an}的公比為q, 則q≠0, a2= = , a4=a3q=2q
所以 + 2q= , 解得q1= , q2= 3, …………1分
當(dāng)q1=, a1=18.所以 an=18×( )n-1= = 2×33-n.
當(dāng)q=3時, a1= ,所以an=
×
=2×3n-5.
…………3分
(II)由(I)及數(shù)列公比大于
,得q=3,an=2×3n-5 ,…………4分
,
(常數(shù)),
.
所以數(shù)列為首項為-4,公差為1的等差數(shù)列,……6分
. …………7分
25.解:(Ⅰ) n=1時 ∴
n=2時
∴
n=3時
∴
…………2分
(Ⅱ)∵ ∴
兩式相減得: 即
也即
∵ ∴
即
是首項為2,公差為4的等差數(shù)列
∴
…………5分
(Ⅲ)
∴
…………7分
∵對所有
都成立 ∴
即
故m的最小值是10 …………8分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com