題目列表(包括答案和解析)
設函數(shù).
(I)求的單調(diào)區(qū)間;
(II)當0<a<2時,求函數(shù)在區(qū)間
上的最小值.
【解析】第一問定義域為真數(shù)大于零,得到.
.
令,則
,所以
或
,得到結論。
第二問中, (
).
.
因為0<a<2,所以,
.令
可得
.
對參數(shù)討論的得到最值。
所以函數(shù)在
上為減函數(shù),在
上為增函數(shù).
(I)定義域為. ………………………1分
.
令,則
,所以
或
. ……………………3分
因為定義域為,所以
.
令,則
,所以
.
因為定義域為,所以
. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為.
………………………7分
(II) (
).
.
因為0<a<2,所以,
.令
可得
.…………9分
所以函數(shù)在
上為減函數(shù),在
上為增函數(shù).
①當,即
時,
在區(qū)間上,
在
上為減函數(shù),在
上為增函數(shù).
所以. ………………………10分
②當,即
時,
在區(qū)間
上為減函數(shù).
所以.
綜上所述,當時,
;
當時,
某公司擬資助三位大學生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨立地對每位大學生的創(chuàng)業(yè)方案進行評審.假設評審結果為“支持”或“不支持”的概率都是.若某人獲得兩個“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助,令
表示該公司的資助總額.
(1) 寫出的分布列; (2) 求數(shù)學期望
.
某廠家擬資助三位大學生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨立地對每位大學生的創(chuàng)業(yè)方案進行評審.假設評審結果為“支持”或“不支持”的概率都是.若某人獲得兩個“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助,令
表示該公司的資助總額.
(Ⅰ)寫出的分布列;
(Ⅱ)求數(shù)學期望.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com