亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    22.設向量a=(n∈N+).函數(shù)y=a?b在[0,1]上的最小值與最大值的和為an.又數(shù)列{bn}滿足: 查看更多

     

    題目列表(包括答案和解析)

    (本題滿分14分)
    已知函數(shù)f(x)=sin(2x-)-1, 設△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,且c=,f(C)=0,若向量m=(1,sinA)與向量n=(2,sinB)共線,求a,b

    查看答案和解析>>

    (本題滿分14分)

    已知函數(shù)f(x)=sin(2x-)-1, 設△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,且c=,f(C)=0,若向量m=(1,sinA)與向量n=(2,sinB)共線,求a,b

     

    查看答案和解析>>

    (本題滿分14分)

    已知函數(shù)f(x)=, 設△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,且c=,f(C)=0,若向量m=(1,sinA)與向量n=(2,sinB)共線,求a,b

    【解】

    查看答案和解析>>

    (本題滿分14分)

    已知函數(shù)f(x)=sin(2x-)-1, 設△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,且c=,f(C)=0,若向量m=(1,sinA)與向量n=(2,sinB)共線,求a,b

    【解】

    查看答案和解析>>

    (本題滿分14分)
    已知函數(shù)f(x)=sin(2x-)-1, 設△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,且c=,f(C)=0,若向量m=(1,sinA)與向量n=(2,sinB)共線,求a,b

    查看答案和解析>>

     

    一、選擇題:(本大題共12小題每小題5分,共60分)

    AADCB  DDBCC  DC

    二、填空題:(共4小題,每小題4分,共16分)

    13. 14.20  15.32  16.

    三、解答題:(共6小題,共74分)

    17.解:(1)………………2分

        .………………………………4分

    在[0,π]上單調(diào)遞增區(qū)間為.…………………6分

       (2),

        當x=0時,,………………………………………8分

        由題設知…………………………………………10分

    解之,得…………………………………………12分

          <td id="rjvax"><strong id="rjvax"></strong></td>

        • 可建立空間直角坐標系A-xyz,由平面幾何知

          識知:AD=4,D(O,4,O),B(2,0,0)。

          C(2,2,0),P(0,0,2),E(0,0,1),

          F(1,0,1),G(1,1,1).……………2分

             (1)=(1,0,1),=(一1,1,1),

          ?=0

          ∴AF與BG所成的角為……………………………4分

             (2)可證明AD⊥平面APB,平面APB的法向量為n(0,1,0)

          設平面CPD的法向量為m=(1, y, z),由

            ∴ m=(1,1,2) ……………………………………………………10分

            ∴ …………………………12分

          19.解:填湖面積     填湖及排水設備費   水面經(jīng)濟收益     填湖造地后收益

                    x(畝)      ax2(元)               bx                 cx

             (1)收益不小于指出的條件可以表示為

            所以.……………………………………3分

          顯然a>0,又c>b

          時,此時所填面積的最大值為畝……………………………7分

             (2)設該地現(xiàn)在水面m畝.今年填湖造地y畝,

          ,………………9分

          ,所以.

          因此今年填湖造地面積最多只能占現(xiàn)有水面的………………………………12分

           20.(本小題滿分12分)

               解:(1)根據(jù)導數(shù)的幾何意義知f(x)=g′(x)=x2+ax-b

               由已知-2、4是方程x2+ax-b=0的兩個實根

               由韋達定理,,………………5分

          (2)g(x)在區(qū)間[一1,3]上是單調(diào)遞減函數(shù),所以在[一1,3]區(qū)間上恒有

          橫成立

          這只需滿足

          而a2+b2可視為平面區(qū)域內(nèi)的點到原點距離的平方,其中點(-2,3)距離原點最近.所以當時,a2+b2 有最小值13. ………………………………12分

          21.解(1)A(a,0),B(0,b),P(x,y)

          ,即……………………………2分

          ,由題意知t>0,

          點P的軌跡方程C為:.…………………………4分

          (2). T=2 時,C為.………………………………………5分

          設M(x1,y1),則N(-x1,-y1),則MN=

          設直線MN的方程為

          點Q到MN距離為

          …………………………………………………………………………7分

          ∴SΔQMN=.…………………………………8分

          ∵S2ΔQMN=

          ∴S2ΔQMN=4?9x1y1

          …………………………………………………………11分

          當且僅當時,等號成立

          ∴SΔQMN的最大值為……………………………………………………12分

          22.(1)證明:,因為對稱軸,所以在[0,1]上為增函數(shù),.……………………………………………………4分

             (2)解:由

          兩式相減得, ………………7分

          當n=1時,b1=S1=1

          當nㄒ2時,

            ………………9分

             (3)解:由(1)與(2)得  …………10分

          假設存在正整數(shù)k時,使得對于任意的正整數(shù)n,都有cnck成立,

          當n=1,2時,c2-c1= c2> c1

          當n=2時,cn+1-cn=(n-2,

          所以當n<8時,cn+1>cn,

          當n=8時,cn+1=cn

          當n>8時,cn+1<cn,   ……………………13分

          所以存在正整數(shù)k=9,使得對于任意的正整數(shù)n,都有cnck成立。  …………14分

           

           

           

           

           

           

            <kbd id="zktwj"></kbd>
            <sub id="zktwj"><optgroup id="zktwj"><div id="zktwj"></div></optgroup></sub>
            <bdo id="zktwj"><video id="zktwj"><sup id="zktwj"></sup></video></bdo>
            <rt id="zktwj"><del id="zktwj"></del></rt>