題目列表(包括答案和解析)
已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)
處的切線的斜率是
.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求在區(qū)間
上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線
上是否存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?說(shuō)明理由.
【解析】第一問(wèn)當(dāng)時(shí),
,則
。
依題意得:,即
解得
第二問(wèn)當(dāng)時(shí),
,令
得
,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問(wèn)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè),則
,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)時(shí),
,則
。
依題意得:,即
解得
(Ⅱ)由(Ⅰ)知,
①當(dāng)時(shí),
,令
得
當(dāng)變化時(shí),
的變化情況如下表:
|
|
0 |
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又,
,
!
在
上的最大值為2.
②當(dāng)時(shí),
.當(dāng)
時(shí),
,
最大值為0;
當(dāng)時(shí),
在
上單調(diào)遞增。∴
在
最大值為
。
綜上,當(dāng)時(shí),即
時(shí),
在區(qū)間
上的最大值為2;
當(dāng)時(shí),即
時(shí),
在區(qū)間
上的最大值為
。
(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè),則
,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
若,則
代入(*)式得:
即,而此方程無(wú)解,因此
。此時(shí)
,
代入(*)式得: 即
(**)
令
,則
∴在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對(duì)于,方程(**)總有解,即方程(*)總有解。
因此,對(duì)任意給定的正實(shí)數(shù),曲線
上存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上
長(zhǎng)沙市某民營(yíng)化工企業(yè)經(jīng)過(guò)近十年打拼,目前凈資產(chǎn)已達(dá)3千萬(wàn)元. 由于種種原因,影響了企業(yè)的進(jìn)一步發(fā)展,企業(yè)領(lǐng)導(dǎo)班子決定對(duì)企業(yè)內(nèi)部所有環(huán)節(jié)進(jìn)行改革. 據(jù)市場(chǎng)調(diào)查報(bào)告顯示:在未來(lái)五年內(nèi),若引進(jìn)新的技術(shù)及設(shè)備改造后,企業(yè)的生產(chǎn)總量為x千噸,最大限度不能超過(guò)4千噸,而每千噸銷(xiāo)售可獲純利P(x)與生產(chǎn)總量x的函數(shù)關(guān)系為 由于該企業(yè)的產(chǎn)品市場(chǎng)占有量較大,產(chǎn)量的大小對(duì)每千噸產(chǎn)品的純利潤(rùn)影響較大. 如果企業(yè)的生產(chǎn)總量為1千噸時(shí),市場(chǎng)該產(chǎn)品每千噸銷(xiāo)售可獲純利
萬(wàn)元,如果生產(chǎn)總量達(dá)到最大限度值4千噸,此時(shí)市場(chǎng)需求趨于飽和狀態(tài),每千噸銷(xiāo)售只能獲純利
萬(wàn)元.企業(yè)在人員工資給、產(chǎn)品廣告費(fèi)用及環(huán)境污染治理等方面需投入每千噸1萬(wàn)元.
(1)求出常數(shù)a,b的值;
(2)求出該企業(yè)在未來(lái)五年內(nèi)凈資產(chǎn)的總額(單位:千萬(wàn)元)關(guān)于生產(chǎn)總量x(單位:千噸)的函數(shù)表達(dá)式;
(3)當(dāng)生產(chǎn)總量x(單位:千噸)取值為多少時(shí),該企業(yè)在未來(lái)五年內(nèi)凈資產(chǎn)的總額(單位:千萬(wàn)元)取最大值,并求出此最大值.
已知正三角形ABC的頂點(diǎn)A(1,1),B(1,3),頂點(diǎn)C在第一象限,若點(diǎn)(x,y)在△ABC內(nèi)部,則z=-x+y的取值范圍是
(A)(1-,2) (B)(0,2)
(C)(
-1,2) (D)(0,1+
)
【解析】 做出三角形的區(qū)域如圖,由圖象可知當(dāng)直線
經(jīng)過(guò)點(diǎn)B時(shí),截距最大,此時(shí)
,當(dāng)直線經(jīng)過(guò)點(diǎn)C時(shí),直線截距最小.因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912420929634592/SYS201207091242163901965792_ST.files/image005.png">軸,所以
,三角形的邊長(zhǎng)為2,設(shè)
,則
,解得
,
,因?yàn)轫旤c(diǎn)C在第一象限,所以
,即
代入直線
得
,所以
的取值范圍是
,選A.
已知函數(shù),其中
.
(1)若在
處取得極值,求曲線
在點(diǎn)
處的切線方程;
(2)討論函數(shù)在
的單調(diào)性;
(3)若函數(shù)在
上的最小值為2,求
的取值范圍.
【解析】第一問(wèn),因
在
處取得極值
所以,,解得
,此時(shí)
,可得求曲線
在點(diǎn)
處的切線方程為:
第二問(wèn)中,易得的分母大于零,
①當(dāng)時(shí),
,函數(shù)
在
上單調(diào)遞增;
②當(dāng)時(shí),由
可得
,由
解得
第三問(wèn),當(dāng)時(shí)由(2)可知,
在
上處取得最小值
,
當(dāng)時(shí)由(2)可知
在
處取得最小值
,不符合題意.
綜上,函數(shù)在
上的最小值為2時(shí),求
的取值范圍是
3 |
3 |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com