亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    而不等式②成立當(dāng)且僅當(dāng)即 查看更多

     

    題目列表(包括答案和解析)

    已知函數(shù)其中為自然對(duì)數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對(duì)于任意的,都有成立,求的取值范圍.

    【解析】第一問(wèn)中,當(dāng)時(shí),,.結(jié)合表格和導(dǎo)數(shù)的知識(shí)判定單調(diào)性和極值,進(jìn)而得到最值。

    第二問(wèn)中,∵,,      

    ∴原不等式等價(jià)于:,

    , 亦即

    分離參數(shù)的思想求解參數(shù)的范圍

    解:(Ⅰ)當(dāng)時(shí),

    當(dāng)上變化時(shí),的變化情況如下表:

     

     

    1/e

    時(shí),,

    (Ⅱ)∵,,      

    ∴原不等式等價(jià)于:,

    , 亦即

    ∴對(duì)于任意的,原不等式恒成立,等價(jià)于對(duì)恒成立,

    ∵對(duì)于任意的時(shí), (當(dāng)且僅當(dāng)時(shí)取等號(hào)).

    ∴只需,即,解之得.

    因此,的取值范圍是

     

    查看答案和解析>>

    已知函數(shù),

    (1)求函數(shù)的定義域;

    (2)求函數(shù)在區(qū)間上的最小值;

    (3)已知,命題p:關(guān)于x的不等式對(duì)函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

    【解析】第一問(wèn)中,利用由 即

    第二問(wèn)中,得:

    ,

    第三問(wèn)中,由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

    當(dāng)命題p為真,命題q為假時(shí);當(dāng)命題p為假,命題q為真時(shí)分為兩種情況討論即可 。

    解:(1)由 即

    (2)得:

    ,

    (3)由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

    當(dāng)命題p為真,命題q為假時(shí),

    當(dāng)命題p為假,命題q為真時(shí),,

    所以

     

    查看答案和解析>>

    已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項(xiàng)和.

    (1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;

    (2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

    (3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.

    【解析】第一問(wèn)利用在中,令n=1,n=2,

       即      

    解得,, [

    時(shí),滿足,

    ,

    第二問(wèn),①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

     ,等號(hào)在n=2時(shí)取得.

    此時(shí) 需滿足.  

    ②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

     是隨n的增大而增大, n=1時(shí)取得最小值-6.

    此時(shí) 需滿足

    第三問(wèn),

         若成等比數(shù)列,則,

    即.

    ,可得,即

            .

    (1)(法一)在中,令n=1,n=2,

       即      

    解得,, [

    時(shí),滿足

    ,

    (2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

     ,等號(hào)在n=2時(shí)取得.

    此時(shí) 需滿足.  

    ②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

     是隨n的增大而增大, n=1時(shí)取得最小值-6.

    此時(shí) 需滿足

    綜合①、②可得的取值范圍是

    (3)

         若成等比數(shù)列,則

    即.

    ,可得,即,

    ,且m>1,所以m=2,此時(shí)n=12.

    因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

     

    查看答案和解析>>

    已知函數(shù)f(x)=ex-ax,其中a>0.

    (1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

    (2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

    【解析】解:.

    當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

    于是對(duì)一切恒成立,當(dāng)且僅當(dāng).        ①

    當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

    故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

    綜上所述,的取值集合為.

    (Ⅱ)由題意知,

    ,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng)

    從而,

    所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

    【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

     

    查看答案和解析>>


    同步練習(xí)冊(cè)答案