題目列表(包括答案和解析)
2 |
2 |
2 |
a |
sinA |
b |
sinB |
asinB |
b |
xsin45° |
2 |
| ||
4 |
| ||
4 |
已知,函數(shù)
(1)當(dāng)時,求函數(shù)
在點(1,
)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個實數(shù)x0,使
>g(xo)成立,求正實數(shù)
的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運用。(1)中,那么當(dāng)
時,
又
所以函數(shù)
在點(1,
)的切線方程為
;(2)中令
有
對a分類討論,和
得到極值。(3)中,設(shè)
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當(dāng)時,
又
∴ 函數(shù)在點(1,
)的切線方程為
--------4分
(Ⅱ)令 有
①
當(dāng)即
時
|
(-1,0) |
0 |
(0, |
|
( |
|
+ |
0 |
- |
0 |
+ |
|
|
極大值 |
|
極小值 |
|
故的極大值是
,極小值是
②
當(dāng)即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述 時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設(shè),
對求導(dǎo),得
∵,
∴ 在區(qū)間
上為增函數(shù),則
依題意,只需,即
解得 或
(舍去)
則正實數(shù)的取值范圍是(
,
)
某省環(huán)保研究所對市中心每天環(huán)境放射性污染情況進行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時刻
(時) 的關(guān)系為
,其中
是與氣象有關(guān)的參數(shù),且
.
(1)令,
,寫出該函數(shù)的單調(diào)區(qū)間,并選擇其中一種情形進行證明;
(2)若用每天的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作
,求
;
(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?
【解析】第一問利用定義法求證單調(diào)性,并判定結(jié)論。
第二問(2)由函數(shù)的單調(diào)性知,
∴,即t的取值范圍是
.
當(dāng)時,記
則
∵在
上單調(diào)遞減,在
上單調(diào)遞增,
第三問因為當(dāng)且僅當(dāng)時,
.
故當(dāng)時不超標(biāo),當(dāng)
時超標(biāo).
已知曲線C:(m∈R)
(1) 若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2) 設(shè)m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。
【解析】(1)曲線C是焦點在x軸上的橢圓,當(dāng)且僅當(dāng)解得
,所以m的取值范圍是
(2)當(dāng)m=4時,曲線C的方程為,點A,B的坐標(biāo)分別為
,
由,得
因為直線與曲線C交于不同的兩點,所以
即
設(shè)點M,N的坐標(biāo)分別為,則
直線BM的方程為,點G的坐標(biāo)為
因為直線AN和直線AG的斜率分別為
所以
即,故A,G,N三點共線。
2 |
2 |
2 |
a |
sinA |
b |
sinB |
asinB |
b |
xsin45° |
2 |
| ||
4 |
| ||
4 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com