亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (3) 是否存在.使得當(dāng)x∈(0,1]時(shí).有最大值-6. 查看更多

     

    題目列表(包括答案和解析)

    設(shè)函數(shù)是定義在[-1,0)∪(0,1]上的奇函數(shù),當(dāng)x∈[-1,0)時(shí),=2ax+ (a為實(shí)數(shù)).

           (1)若在(0,1]上是增函數(shù),求a的取值范圍;

           (2)是否存在a,使得當(dāng)x∈(0,1]時(shí),有最大值-6?

          

    查看答案和解析>>

    設(shè)函數(shù)f(x)是定義在[-1,0)∪(0,1]上的偶函數(shù),當(dāng)x∈[-1,0)時(shí),f(x)=x3-ax(a∈R).

    (1)當(dāng)x∈(0,1]時(shí),求f(x)的解析式;

    (2)若a>3,試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論;

    (3)是否存在a,使得當(dāng)x∈(0,1]時(shí),f(x)有最大值1?

    查看答案和解析>>

    設(shè)函數(shù)f(x)是定義在[-1,0)∪(0,1]上的偶函數(shù),當(dāng)x∈[-1,0)時(shí),f(x)=x3-ax(aR).

    (1)當(dāng)x∈(0,1]時(shí),求f(x)的解析式;

    (2)若a>3,試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論;

    (3)是否存在a,使得當(dāng)x∈(0,1]時(shí),f(x)有最大值1?

    查看答案和解析>>

    已知函數(shù)f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函數(shù),在(-∞,-2)上為減函數(shù).

    (1)求f(x)的表達(dá)式;

    (2)若當(dāng)x∈時(shí),不等式f(x)<m恒成立,求實(shí)數(shù)m的值;

    (3)是否存在實(shí)數(shù)b使得關(guān)于x的方程f(x)=x2+x+b在區(qū)間[0,2]上恰好有兩個(gè)相異的實(shí)根,若存在,求實(shí)數(shù)b的取值范圍.

    查看答案和解析>>

    設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.”

    (Ⅰ)判斷函數(shù)f(x)=+是否是集合M中的元素,并說(shuō)明理由;

    (Ⅱ)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域?yàn)镈,則對(duì)于任意[m,n]D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立,試用這一性質(zhì)證明:方程f(x)-x=0只有一個(gè)實(shí)數(shù)根;

    (Ⅲ)設(shè)x1是方程f(x)-x=0的實(shí)數(shù)根,求證:對(duì)于f(x)定義域中任意的x2,x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),|f(x3)-f(x2)|<2.

    查看答案和解析>>

    一、選擇題:

    1. D 2. B  3. A  4. D  5. C  6. B  7. D  8. A  9. C  10. B  11. A   12. B

    二、填空題:

    13. 5;14. 18 ;15. 2 ;16. ③④

    三、解答題:

    17. 解:(1) 由已知得,即,………………2分

    所以數(shù)列{}是以1為首項(xiàng),公差2的等差數(shù)列.…………………………4分

    .………………………………………5分

    (2) 由(1)知:,從而.…………………………7分

    ………………………………9分

    ……………………12分

    18. 解:(1)……2分

    ……………………4分

    ………………………6分

    (2) ∵

    (k∈Z);…………………… 8分

    ≤x≤(k∈Z);…………………………10分

    的單調(diào)遞增區(qū)間為[,] (k∈Z)……………………12分

    19. (1)解:把4名獲書(shū)法比賽一等獎(jiǎng)的同學(xué)編號(hào)為1,2,3,4,2名獲繪畫(huà)比賽一等獎(jiǎng)的同學(xué)編號(hào)為5,6.從6名同學(xué)中任選兩名的所有可能結(jié)果如下:(1,2),(1,3),(1,4),(1,5), (1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15個(gè).…………………4分

    (1) 從6名同學(xué)中任選兩名,都是書(shū)法比賽一等獎(jiǎng)的所有可能是:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6個(gè).…………………………6分

    ∴選出的兩名志愿者都是書(shū)法比賽一等獎(jiǎng)的概率.…………………8分

    (2) 從6名同學(xué)中任選兩名,一名是書(shū)法比賽一等獎(jiǎng),另一名是繪畫(huà)比賽一等獎(jiǎng)的所有可能是:(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8個(gè).………………………10分

    ∴選出的兩名志愿者一名是書(shū)法比賽一等獎(jiǎng),另一名是繪畫(huà)比賽一等獎(jiǎng)的概率是.………………………12分

    20. 解:(1) 取AB的中點(diǎn)G,連FG,可得FG∥AE,F(xiàn)G=AE,又CD⊥平面ABC,AE⊥平面ABC,∴CD∥AE,CD=AE………………………2分

    ∴FG∥CD,F(xiàn)G=CD,∵FG⊥平面ABC……………4分

    ∴四邊形CDFG是矩形,DF∥CG,CG平面ABC,

    DF平面ABC∴DF∥平面ABC…………………6分

    (2) Rt△ABE中,AE=2a,AB=2a,F(xiàn)為BE中點(diǎn),∴AF⊥BE

    ∵△ABC是正三角形,∴CG⊥AB,∴DF⊥AB…………9分

    又DF⊥FG,∴DF⊥平面ABE,DF⊥AF,

    ∴AF⊥平面BDF,∴AF⊥BD.……………………12分

    21. 解:(1)與圓相切,則,即,所以,

    ………………………3分

    則由,消去y得:  (*)

    由Δ=,∴………………4分

    (2) 設(shè),由(*)得,.…………5分

    .…………………………6分

    ,所以.∴k=±1.

    .,∴………………………7分

    .…………………8分

    (3) 由(2)知:(*)為

    由弦長(zhǎng)公式得

     … 10分

    所以………………………12分

    22. (1) 解:設(shè)x∈(0,1],則-x∈[-1,0),∴………………1分

    是奇函數(shù).∴=………………………2分

    ∴當(dāng)x∈(0,1]時(shí), ,…………………3分

    ………………………………4分

    (2) 當(dāng)x∈(0,1]時(shí),∵…………………6分

    ,x∈(0,1],≥1,

    .………………………7分

    .……………………………8分

    在(0,1]上是單調(diào)遞增函數(shù).…………………9分

    (3) 解:當(dāng)時(shí), 在(0,1]上單調(diào)遞增. ,

    (不合題意,舍之),………………10分

    當(dāng)時(shí),由,得.……………………………11分

    如下表:

    1

    >0

    0

    <0

     

    最大值

       ㄋ

     

    由表可知: ,解出.……………………12分

    此時(shí)∈(0,1)………………………………13分

    ∴存在,使在(0,1]上有最大值-6.………………………14分

     

     

     

     


    同步練習(xí)冊(cè)答案