亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (2)若.且函數(shù)在上是減函數(shù).求的取值范圍. 查看更多

     

    題目列表(包括答案和解析)

    減函數(shù)y=f (x)定義在[-1,1]上減函數(shù),且是奇函數(shù).若f(a2-a-1)+f(4a-5)>0,求實數(shù)a的取值范圍.

    查看答案和解析>>

    減函數(shù)y=f (x)定義在[-1,1]上減函數(shù),且是奇函數(shù).若f(a2-a-1)+f(4a-5)>0,求實數(shù)a的取值范圍.

    查看答案和解析>>

    函數(shù)f(x)是定義在(0,+∞)上的單調(diào)減函數(shù),且滿足條件f(2)=1.且f(xy)=f(x)+f(y);
    (1)證明:f(1)=0;
    (2)若f(x)+f(x-3)≥2成立,求x的取值范圍.

    查看答案和解析>>

    函數(shù)f(x)是定義在(-2,2)上的奇函數(shù),且在(-2,2)上單調(diào)遞減,若f(m-1)+f(2m-3)>0,求m的取值范圍.

    查看答案和解析>>

    函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo),導(dǎo)函數(shù)f′(x)是減函數(shù),且f′(x)>0,設(shè)x0∈(0,+∞),y=kx+m是曲線y=f(x)在點(x0,f(x0))處的切線方程,并設(shè)函數(shù)g(x)=kx+m.

    (1)用x0f(x0)、f′(x0)表示m;

    (2)證明當(dāng)x0∈(0,+∞)時,g(x)≥f(x);

    (3)若關(guān)于x的不等式x2+1≥ax+b上恒成立,其中a、b為實數(shù),求b的取值范圍及a與b 所滿足的關(guān)系.

    查看答案和解析>>

    一、選擇題(8小題,每題5分,共40分)

    題號

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    答案

    D

    B

    B

    B

    A

    C

    D

    B

    A

    D

    二、填空題(6小題,每題5分,共30分)

                

    11. 5 ;    12.       13.15 ; 15         14。2;   15.

    三、解答題(6小題,共80分)

    16.解:(1)

     

    ----------------5分

     

        因為最小正周期為,∴        ,∴;----------6分

     

    (2)由(1)知                   ,

     

    因為,∴-------------------8分

    因為             ,∴                   

     

    所以----------------10分

         所以         或       .------------------12分

     

    17.解:(1)已知函數(shù),       ------2   

    又函數(shù)圖象在點處的切線與直線平行,且函數(shù)處取得極值,,且,解得

    ,且   --------------5分     

    ,        

    所以函數(shù)的單調(diào)遞減區(qū)間為  -----------------8分           

    (2)當(dāng)時,,又函數(shù)上是減函數(shù)

    上恒成立,   --------------10分 

    上恒成立。----------------12分

     

    18.解:(1)

    分組

    頻數(shù)

    頻率

    50.5~60.5

    4

    0.08

    60.5~70.5

    8

    0.16

    70.5~80.5

    10

    0.20

    80.5~90.5

    16

    0.32

    90.5~100.5

    12

    0.24

    合計

    50

    1.00

     

     

     

    ---------------------4分

    (2) 頻數(shù)直方圖如右上所示--------------------------------8分

    (3) 成績在75.5~80.5分的學(xué)生占70.5~80.5分的學(xué)生的,因為成績在70.5~80.5分的學(xué)生頻率為0.2 ,所以成績在76.5~80.5分的學(xué)生頻率為0.1 ,---------10分

    成績在80.5~85.5分的學(xué)生占80.5~90.5分的學(xué)生的,因為成績在80.5~90.5分的學(xué)生頻率為0.32 ,所以成績在80.5~85.5分的學(xué)生頻率為0.16  -------------12分

    所以成績在76.5~85.5分的學(xué)生頻率為0.26,

    由于有900名學(xué)生參加了這次競賽,

    所以該校獲得二等獎的學(xué)生約為0.26´900=234(人)    -------------14分

    19.解(Ⅰ)證明:∵PA⊥底面ABCD,MN底面ABCD

    ∴MN⊥PA   又MN⊥AD   且PA∩AD=A

    ∴MN⊥平面PAD  ………………3分

    MN平面PMN   ∴平面PMN⊥平面PAD  …………4分

    (Ⅱ)∵BC⊥BA   BC⊥PA   PA∩BA=A   ∴BC⊥平面PBA

    ∴∠BPC為直線PC與平面PBA所成的角  即…………7分

    在Rt△PBC中,PC=BC/sin∠BPC=


      ………………10分

    (Ⅲ)由(Ⅰ)MN⊥平面PAD知   PM⊥MN   MQ⊥MN

    ∴∠PMQ即為二面角P―MN―Q的平面角  …………12分

          ∴   …………14分

    20.(14分)

    解(1),動圓的半徑為r,則|PQ1|=r+3,

    |PQ2|= r+1,|PQ1|-|PQ2|=2,…………………3分

    P的軌跡是以O1、O2為焦點的雙曲線右支,a=1,c=2,

    方程為………………………………………………6分

       (2)設(shè)Px1,y1),Qx2,y2),當(dāng)k不存在時,不合題意.

           直線PQ的方程為y=kx-3),

           ………………8分

           由

           、

           …………………………………………………………10分

           …………14分

     

     

     

     

     

     

    21.  (1)設(shè)----------------3

    ,又

    ---------------------------------5

    (2)由已知得

    兩式相減得,-------------------------7

    當(dāng).若

    -------------------------------9

    (3) 由,

    .-----------------------------------11分

    ------------------------------13

    可知,-------------------------------14. 分

     

     


    同步練習(xí)冊答案