亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    又.可得.即.故 --5分 查看更多

     

    題目列表(包括答案和解析)

    已知函數(shù) R).

    (Ⅰ)若 ,求曲線(xiàn)  在點(diǎn)  處的的切線(xiàn)方程;

    (Ⅱ)若  對(duì)任意  恒成立,求實(shí)數(shù)a的取值范圍.

    【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

    第一問(wèn)中,利用當(dāng)時(shí),

    因?yàn)榍悬c(diǎn)為(), 則,                 

    所以在點(diǎn)()處的曲線(xiàn)的切線(xiàn)方程為:

    第二問(wèn)中,由題意得,即可。

    Ⅰ)當(dāng)時(shí),

    ,                                  

    因?yàn)榍悬c(diǎn)為(), 則,                  

    所以在點(diǎn)()處的曲線(xiàn)的切線(xiàn)方程為:.    ……5分

    (Ⅱ)解法一:由題意得,.      ……9分

    (注:凡代入特殊值縮小范圍的均給4分)

    ,           

    因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,

    上單調(diào)遞增,                            ……12分

    要使恒成立,則,解得.……15分

    解法二:                 ……7分

          (1)當(dāng)時(shí),上恒成立,

    上單調(diào)遞增,

    .                  ……10分

    (2)當(dāng)時(shí),令,對(duì)稱(chēng)軸,

    上單調(diào)遞增,又    

    ① 當(dāng),即時(shí),上恒成立,

    所以單調(diào)遞增,

    ,不合題意,舍去  

    ②當(dāng)時(shí),, 不合題意,舍去 14分

    綜上所述: 

     

    查看答案和解析>>

    已知函數(shù),.

    (Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

    (Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.

    【解析】第一問(wèn)中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來(lái)分析求解。

    第二問(wèn)中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

    解:(1)

    (2)不等式 ,即,即.

    轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.

    即不等式上恒成立.

    即不等式上恒成立.

    設(shè),則.

    設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.

    在區(qū)間上是減函數(shù)。又

    故存在,使得.

    當(dāng)時(shí),有,當(dāng)時(shí),有.

    從而在區(qū)間上遞增,在區(qū)間上遞減.

    [來(lái)源:]

    所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有;

    故使命題成立的正整數(shù)m的最大值為5

     

    查看答案和解析>>

    設(shè)橢圓 )的一個(gè)頂點(diǎn)為,,分別是橢圓的左、右焦點(diǎn),離心率 ,過(guò)橢圓右焦點(diǎn) 的直線(xiàn)  與橢圓 交于 , 兩點(diǎn).

    (1)求橢圓的方程;

    (2)是否存在直線(xiàn) ,使得 ,若存在,求出直線(xiàn)  的方程;若不存在,說(shuō)明理由;

    【解析】本試題主要考查了橢圓的方程的求解,以及直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對(duì)直線(xiàn)分為兩種情況討論,當(dāng)直線(xiàn)斜率存在時(shí),當(dāng)直線(xiàn)斜率不存在時(shí),聯(lián)立方程組,結(jié)合得到結(jié)論。

    解:(1)橢圓的頂點(diǎn)為,即

    ,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分

    (2)由題可知,直線(xiàn)與橢圓必相交.

    ①當(dāng)直線(xiàn)斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意.                    --------5分

    ②當(dāng)直線(xiàn)斜率存在時(shí),設(shè)存在直線(xiàn),且,.

    ,       ----------7分

    ,,               

       = 

    所以,                               ----------10分

    故直線(xiàn)的方程為 

     

    查看答案和解析>>

    已知點(diǎn)),過(guò)點(diǎn)作拋物線(xiàn)的切線(xiàn),切點(diǎn)分別為、(其中).

    (Ⅰ)若,求的值;

    (Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線(xiàn)相切,求圓的方程;

    (Ⅲ)若直線(xiàn)的方程是,且以點(diǎn)為圓心的圓與直線(xiàn)相切,

    求圓面積的最小值.

    【解析】本試題主要考查了拋物線(xiàn)的的方程以及性質(zhì)的運(yùn)用。直線(xiàn)與圓的位置關(guān)系的運(yùn)用。

    中∵直線(xiàn)與曲線(xiàn)相切,且過(guò)點(diǎn),∴,利用求根公式得到結(jié)論先求直線(xiàn)的方程,再利用點(diǎn)P到直線(xiàn)的距離為半徑,從而得到圓的方程。

    (3)∵直線(xiàn)的方程是,,且以點(diǎn)為圓心的圓與直線(xiàn)相切∴點(diǎn)到直線(xiàn)的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

    (Ⅰ)由可得,.  ------1分

    ∵直線(xiàn)與曲線(xiàn)相切,且過(guò)點(diǎn),∴,即,

    ,或, --------------------3分

    同理可得:,或----------------4分

    ,∴,. -----------------5分

    (Ⅱ)由(Ⅰ)知,,,則的斜率,

    ∴直線(xiàn)的方程為:,又,

    ,即. -----------------7分

    ∵點(diǎn)到直線(xiàn)的距離即為圓的半徑,即,--------------8分

    故圓的面積為. --------------------9分

    (Ⅲ)∵直線(xiàn)的方程是,,且以點(diǎn)為圓心的圓與直線(xiàn)相切∴點(diǎn)到直線(xiàn)的距離即為圓的半徑,即,    ………10分

    ,

    當(dāng)且僅當(dāng),即,時(shí)取等號(hào).

    故圓面積的最小值

     

    查看答案和解析>>


    同步練習(xí)冊(cè)答案