亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (文)已知正項數(shù)列{an}前n項和為Sn.且 (1)求數(shù)列{an}的通項公式, 20090422 查看更多

     

    題目列表(包括答案和解析)

    (文)已知以a為首項的數(shù)列{an}滿足:an+1=
    an-3,an>3
    2anan≤3.

    (1)若0<an≤6,求證:0<an+1≤6;
    (2)若a,k∈N﹡,求使an+k=an對任意正整數(shù)n都成立的k與a;
    (3)若a=
    3
    2m-1
    (m∈N﹡),試求數(shù)列{an}的前m項的和sm

    查看答案和解析>>

    (文)已知向量, (n為正整數(shù)),函數(shù),設(shè)f(x)在(0,+∞)上取最小值時的自變量x取值為an
    (1)求數(shù)列{an}的通項公式;
    (2)已知數(shù)列{bn},其中bn=an+12-an2,設(shè)Sn為數(shù)列{bn}的前n項和,求;
    (3)已知點列A1(1,a12)、A2(2,a22)、A3(3,a32)、…、An(n,an2)、…,設(shè)過任意兩點Ai,Aj(i,j為正整數(shù))的直線斜率為kij,當(dāng)i=2008,j=2010時,求直線AiAj的斜率.

    查看答案和解析>>

    (文)已知向量, (n為正整數(shù)),函數(shù),設(shè)f(x)在(0,+∞)上取最小值時的自變量x取值為an
    (1)求數(shù)列{an}的通項公式;
    (2)已知數(shù)列{bn},其中bn=an+12-an2,設(shè)Sn為數(shù)列{bn}的前n項和,求;
    (3)已知點列A1(1,a12)、A2(2,a22)、A3(3,a32)、…、An(n,an2)、…,設(shè)過任意兩點Ai,Aj(i,j為正整數(shù))的直線斜率為kij,當(dāng)i=2008,j=2010時,求直線AiAj的斜率.

    查看答案和解析>>

    (文)已知向量數(shù)學(xué)公式數(shù)學(xué)公式 (n為正整數(shù)),函數(shù)數(shù)學(xué)公式,設(shè)f(x)在(0,+∞)上取最小值時的自變量x取值為an
    (1)求數(shù)列{an}的通項公式;
    (2)已知數(shù)列{bn},其中bn=an+12-an2,設(shè)Sn為數(shù)列{bn}的前n項和,求數(shù)學(xué)公式;
    (3)已知點列A1(1,a12)、A2(2,a22)、A3(3,a32)、…、An(n,an2)、…,設(shè)過任意兩點Ai,Aj(i,j為正整數(shù))的直線斜率為kij,當(dāng)i=2008,j=2010時,求直線AiAj的斜率.

    查看答案和解析>>

    (文)已知向量
    a
    =(x2+1,-x)
    ,
    b
    =(1,2
    n2+1
    )
    (n為正整數(shù)),函數(shù)f(x)=
    • 
    ,設(shè)f(x)在(0,+∞)上取最小值時的自變量x取值為an
    (1)求數(shù)列{an}的通項公式;
    (2)已知數(shù)列{bn},其中bn=an+12-an2,設(shè)Sn為數(shù)列{bn}的前n項和,求
    lim
    n→∞
    Sn
    C2n
    ;
    (3)已知點列A1(1,a12)、A2(2,a22)、A3(3,a32)、…、An(n,an2)、…,設(shè)過任意兩點Ai,Aj(i,j為正整數(shù))的直線斜率為kij,當(dāng)i=2008,j=2010時,求直線AiAj的斜率.

    查看答案和解析>>

    一、選擇題(本大題共12小題,每題5分,共60分)

    1.A    2.B    3.C    4.A    5.D    6.C    7.B    8.C    9.A

    10.B   11.(理)C(文)B       12.D

    二、填空題(本大題共4小題,每題4分,共16分)

    13.                            14.②③                  15.47                     16.□

    三、解答題(本大題共6小題,共計76分)

    17.解:(1)依題意函數(shù)的圖象按向量平移后得

                                                    ………………………2分

           即=                                                ………………………4分

           又

           比較得a=1,b=0                                                                     ………………………6分

       (2)

           =                                                              ………………………9分

          

          

           ∴的單調(diào)增區(qū)間為[,]          ……………………12分

    18.解:

       (1)設(shè)連對的個數(shù)為y,得分為x

           因為y=0,1,2,4,所以x=0,2,4,8.

          

  • <sub id="66161"></sub>
    1. x

      0

      2

      4

      8

         

             于是x的分布列為

            <td id="rjvax"><strong id="rjvax"></strong></td>
            <tfoot id="66161"></tfoot>
            <strike id="66161"></strike>
            <kbd id="66161"></kbd>

          • ……9分

             

             

               (2)Ex=0×+2×+4×+8×=2

                   即該人得分的期望為2分。                                                     ……………………12分

               (文)

               (1)從口袋A中摸出的3個球為最佳摸球組合即為從口袋A中摸出2個紅球和一個黑球

                   其概念為                                                     ……………………6分

               (2)由題意知:每個口袋中摸球為最佳組合的概率相同,從5個口袋中摸球可以看成5

                   次獨立重復(fù)試驗,故所求概率為………………………12分

            19.解法一:以D為原點,DA,DC,DD1

                   所在直線分別為x軸、y軸、z軸,建

                   立空間直角坐標(biāo)系D―xyz,則

                   A(a,0,0)、B(a,2a,0)、

                   C(0,2a,0)、A1(a,0,a)、

                   D1(0,0,a)。E、P分別是BC、A1D1

                   的中點,M、N分別是AE、CD1的中點

                   ∴……………………………………2分

               (1)⊥面ADD1A1

                   而=0,∴,又∵MN面ADD1A1,∴MN∥面ADD1A1;………4分

               (2)設(shè)面PAE的法向量為,又

                   則又

                   ∴=(4,1,2),又你ABCD的一個法向量為=(0,0,1)

                   ∴

                   所以二面角P―AE―D的大小為                        ………………………8分

               (3)設(shè)為平面DEN的法向量,

                   又=(),=(0,a,),,0,a)

                   ∴所以面DEN的一個法向量=(4,-1,2)

                   ∵P點到平面DEN的距離為

                   ∴

                  

                   所以                                              ……………………12分

                   解法二:

               (1)證明:取CD的中點為K,連接

                   ∵M,N,K分別為AE,CD1,CD的中點

                   ∴MK∥AD,ND∥DD1,∴MK∥面ADD1A1,NK∥面ADD1A1

                   ∴面MNK∥面ADD1A1,∴MN∥面ADD1A1,                      ………………………4分

               (2)設(shè)F為AD的中點,∵P為A1D1的中點

                   ∴PF∥DD1,PF⊥面ABCD

                   作FH⊥AE,交AE于H,連結(jié)PH,則由三垂

                   線定理得AE⊥PH,從而∠PHF為二面角

                   P―AE―D的平面角。

                   在Rt△AAEF中,AF=,EF=2,AE=,

                   從而FH=

                   在Rt△PFH中,tan∠PHF=

                   故:二面角P―AE―D的大小為arctan

               (3)

                   作DQ⊥CD1,交CD1于Q,

                   由A1D1⊥面CDD1C1,得A1D1⊥DQ,∴DQ⊥面BCD1A1。

                   在Rt△CDD1中,

                   ∴  ……………………12分

            20.解:(理)

               (1)函數(shù)的定義域為(0,+

                   當(dāng)a=-2e時,              ……………………2分

                   當(dāng)x變化時,,的變化情況如下:

            (0,

            ,+

            0

            極小值

                   由上表可知,函數(shù)的單調(diào)遞減區(qū)間為(0,

                   單調(diào)遞增區(qū)間為(,+

                   極小值是)=0                                                            ……………………6分

               (2)由           ……………………7分

                   又函數(shù)為[1,4]上單調(diào)減函數(shù),

                   則在[1,4]上恒成立,所以不等式在[1,4]上恒成立。

                   即在,[1,4]上恒成立                                           ……………………10分

                   又=在[1,4]上為減函數(shù)

                   ∴的最小值為

                   ∴                                                                            ……………………12分

              (文)(1)∵函數(shù)在[0,1]上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

                   ∴x=1時,取得極大值,

                   ∴

                   ∴4-12+2a=0a=4                                                                 ………………………4分

               (2)A(x0,f(x0))關(guān)于直線x=1的對稱點B的坐標(biāo)為(2- x0,f(x0

                  

                   =

                   ∴A關(guān)于直線x=1的對稱點B也在函數(shù)的圖象上            …………………8分

               (3)函數(shù)的圖象與函數(shù)的圖象恰有3個交點,等價于方程

                   恰有3個不等實根,

                  

                   ∵x=0是其中一個根,

                   ∴方程有兩個非零不等實根

                                                   ……………………12分

            21.解:(理)(1)由已知得:

                          

                   ∵                                                     ①…………………2分

                   ∴                                                                 ②

                   ②―①

                   即

                   又

                   ∴                                                                      ……………………5分

                   ∴{an}成等差數(shù)列,且d=1,又a1=1,∴…………………6分

               (2)∵

                   ∴

                   ∴                   …………………8分

                   兩式相減

                  

                   ∴                                                          ……………………10分

                   ∴               ……………………12分

               (文)(1)由已知得:

                  

                   ∴

                   ∵                                                     ①…………………2分

                   ∴                                                                 ②

                   ②―①

                   即

                   又

                   ∴                                                                      ……………………5分

                   ∴{an}成等差數(shù)列,且d=1,又a1=1,∴…………………6分

               (2)∵

                   ∴

                   ∴                   …………………8分

                   兩式相減

                  

                   ∴                                                          ……………………10分

                   ∴               ……………………12分

             

            22.解:(1)

                   設(shè)M(x,y)是曲線C上任一點,因為PM⊥x軸,

                   所以點P的坐標(biāo)為(x,3y)                                                   …………………2分

                   點P在橢圓,所以

                   因此曲線C的方程是                                           …………………5分

               (2)當(dāng)直線l的斜率不存在時,顯然不滿足條件

                   所以設(shè)直線l的方程為與橢圓交于Ax1,y1),Bx2,y2),N點所在直線方

                   程為

                   ,由

                                                           ……………………6分

                   由△=………………8分

                   ∵,所以四邊形OANB為平行四邊形               …………………9分

                   假設(shè)存在矩形OANB,則

                  

                   所以

                   即                                                                   ……………………11分

                   設(shè)N(),由,得

                   ,

                   即N點在直線

                   所以存在四邊形OANB為矩形,直線l的方程為 ……………………14分