亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    線平行. 的解析式; 查看更多

     

    題目列表(包括答案和解析)

    已知函數(shù)在x=1處取得極值2.

    (1)求f(x)的解析式;

    (2)設(shè)A是曲線y=f(x)上除原點(diǎn)O外的任意一點(diǎn),過(guò)OA的中點(diǎn)且垂直于x軸的直線交曲線于點(diǎn)B,試問(wèn):是否存在這樣的點(diǎn)A,使得曲線在點(diǎn)B處的切線與OA平行?若存在,求出點(diǎn)A的坐標(biāo);若不存在,說(shuō)明理由;

    (3)設(shè)函數(shù)g(x)=x2-2ax+a,若對(duì)于任意x1∈R,總存在x2∈[-1,1],使得g(x2)≤f(x1),求實(shí)數(shù)a的取值范圍.

    查看答案和解析>>

    已知函數(shù)f(x)滿足f(logax=,(其中a>0且a≠1)

    (1)求f(x)的解析式及其定義域;

    (2)在函數(shù)y=f(x)的圖像上是否存在兩個(gè)不同的點(diǎn),使過(guò)兩點(diǎn)的直線與x軸平行,如果存在,求出兩點(diǎn);如果不存在,說(shuō)明理由.

    查看答案和解析>>

    已知函數(shù)在x=1處取得極值2,
    (1)求f(x)的解析式;
    (2)設(shè)A是曲線y=f(x)上除原點(diǎn)O外的任意一點(diǎn),過(guò)OA的中點(diǎn)且垂直于x軸的直線交曲線于點(diǎn)B,試問(wèn):是否存在這樣的點(diǎn)A,使得曲線在點(diǎn)B處的切線與OA平行?若存在,求出點(diǎn)A的坐標(biāo);若不存在,說(shuō)明理由;
    (3)設(shè)函數(shù)g(x)=x2-2ax+a,若對(duì)于任意x1∈R的,總存在x2∈[-1,1],使得g(x2)≤f(x1),求實(shí)數(shù)a的取值范圍.

    查看答案和解析>>

    已知函數(shù)在x=1處取得極值2,
    (1)求f(x)的解析式;
    (2)設(shè)A是曲線y=f(x)上除原點(diǎn)O外的任意一點(diǎn),過(guò)OA的中點(diǎn)且垂直于x軸的直線交曲線于點(diǎn)B,試問(wèn):是否存在這樣的點(diǎn)A,使得曲線在點(diǎn)B處的切線與OA平行?若存在,求出點(diǎn)A的坐標(biāo);若不存在,說(shuō)明理由;
    (3)設(shè)函數(shù)g(x)=x2-2ax+a,若對(duì)于任意x1∈R的,總存在x2∈[-1,1],使得g(x2)≤f(x1),求實(shí)數(shù)a的取值范圍.

    查看答案和解析>>

    已知函數(shù)在x=1處取得極值2,
    (1)求f(x)的解析式;
    (2)設(shè)A是曲線y=f(x)上除原點(diǎn)O外的任意一點(diǎn),過(guò)OA的中點(diǎn)且垂直于x軸的直線交曲線于點(diǎn)B,試問(wèn):是否存在這樣的點(diǎn)A,使得曲線在點(diǎn)B處的切線與OA平行?若存在,求出點(diǎn)A的坐標(biāo);若不存在,說(shuō)明理由;
    (3)設(shè)函數(shù)g(x)=x2-2ax+a,若對(duì)于任意x1∈R的,總存在x2∈[-1,1],使得g(x2)≤f(x1),求實(shí)數(shù)a的取值范圍.

    查看答案和解析>>

     

    一、選擇題:

    (1)D     (2)B     (3)C     (4)B     (5)B     (6)A   

    (7)C     (8)A     (9)D    (10)B     (11)C    (12)B

     

    二、填空題:

    (13)2               (14)  (15)200  (16)②③ 

     

    三、解答題

    17.   (1) 故函數(shù)的定義域是(-1,1). ………… 2分

    (2)由,得(R),所以,      ……………  5分

    所求反函數(shù)為( R).                …………………  7分

    (3) ==-,所以是奇函數(shù).………  12分

     

    18. (1)設(shè),則.        …………………  1分

    由題設(shè)可得解得      ………………… 5分

    所以.                                …………………  6分

    (2) ,. ……  8分

    列表:

     

     

     

                                                         …………………  11分

    由表可得:函數(shù)的單調(diào)遞增區(qū)間為,       ………………  12分

    19.(1)證明:設(shè),且

    ,且.                    …………………  2分

    上是增函數(shù),∴.        …………………  4分

    為奇函數(shù),∴,                      

    , 即上也是增函數(shù).         ………………  6分

    (2)∵函數(shù)上是增函數(shù),且在R上是奇函數(shù),

    上是增函數(shù).                       ……………………  7分

    于是

     

    .        …………  10分

    ∵當(dāng)時(shí),的最大值為,

    ∴當(dāng)時(shí),不等式恒成立.                         ………………  12分

     

    20. ∵AB=x, ∴AD=12-x.                                   ………………1分

    ,于是.         ………………3分

    由勾股定理得   整理得    …………5分

    因此的面積 .  ……7分

      得                                ………………8分

    .                         ………………10分

    當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),S有最大值  ……11分

    答:當(dāng)時(shí),的面積有最大值             ………………12分

     

    21. (1) h (x)                            …………………5分

       (2) 當(dāng)x≠1時(shí), h(x)= =x-1++2,                       ………………6分

          若 x > 1時(shí), 則 h (x)≥4,其中等號(hào)當(dāng) x = 2時(shí)成立               ………………8分

    若x<1時(shí), 則h (x) ≤ 0,其中等號(hào)當(dāng) x = 0時(shí)成立               ………………10分

    ∴函數(shù) h (x)的值域是 (-∞,0 ] ∪ { 1 } ∪ [ 4 ,+∞)             ………………12分

     

    22. (1)

    切線PQ的方程             ………2分

       (2)令y=0得                           ………4分

     

    解得 .                         ………6分

    又0<t<6, ∴4<t<6,                                            ………7分

    g (t)在(m, n)上單調(diào)遞減,故(m, n)              ………8分

    (3)當(dāng)在(0,4)上單調(diào)遞增,

     

    ∴P的橫坐標(biāo)的取值范圍為.                               ………14分

     

     


    同步練習(xí)冊(cè)答案