亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    13.已知圓軸交于A.B兩點(diǎn).圓心為P.若.則c的值等于 . 查看更多

     

    題目列表(包括答案和解析)

    已知圓軸交于A、B兩點(diǎn),圓心為P,若,則c的值等于          。

    查看答案和解析>>

    若圓y軸交于A、B兩點(diǎn),且∠ACB=90°(其中C為已知圓的圓心),則實(shí)數(shù)m等于__________

    查看答案和解析>>

    若圓與y軸交于A、B兩點(diǎn),且∠ACB=90°(其中C為已知圓的圓心),則實(shí)數(shù)m等于__________.

    查看答案和解析>>

    已知圓錐曲線C上任意一點(diǎn)到兩定點(diǎn)F1(-1,0)、F2(1,0)的距離之和為常數(shù),曲線C的離心率e=
    1
    2

    (1)求圓錐曲線C的方程;
    (2)設(shè)經(jīng)過(guò)點(diǎn)F2的任意一條直線與圓錐曲線C相交于A、B,試證明在x軸上存在一個(gè)定點(diǎn)P,使
    PA
    PB
    的值是常數(shù).

    查看答案和解析>>

    已知圓C:(x+4)2+y2=4,圓D的圓心D在y 軸上且與圓C外切,圓D與y 軸交于A、B兩點(diǎn),定點(diǎn)P的坐標(biāo)為(-3,0).
    (1)若點(diǎn)D(0,3),求∠APB的正切值;
    (2)當(dāng)點(diǎn)D在y軸上運(yùn)動(dòng)時(shí),求∠APB的最大值;
    (3)在x軸上是否存在定點(diǎn)Q,當(dāng)圓D在y軸上運(yùn)動(dòng)時(shí),∠AQB是定值?如果存在,求出Q點(diǎn)坐標(biāo);如果不存在,說(shuō)明理由.

    查看答案和解析>>

     

    第Ⅰ卷(選擇題,共50分)

    1―3  AAD  4(文)D(理)B  5(文)B(理)C 

    1.3.5

    第Ⅱ卷(非選擇題,共100分)

    二、填空題

    11.4   12.96  13.-3  14.(文)(理)

    15.(文)   (理)

    三、解答題

    16.解:(1)

       

       

       

       

         …………(4分)

       (1)(文科)在時(shí),

       

       

        在時(shí),為減函數(shù)

        從而的單調(diào)遞減區(qū)間為;…………(文8分)

       (2)(理科)  

        當(dāng)時(shí),由得單調(diào)遞減區(qū)間為

        同理,當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為…………(理8分)

       (3)當(dāng),變換過(guò)程如下:

        1°將的圖象向右平移個(gè)單位可得函數(shù)的圖象。

        2°將所得函數(shù)圖象上每個(gè)點(diǎn)的縱坐標(biāo)擴(kuò)大為原來(lái)的倍,而橫坐標(biāo)保持不變,可得函數(shù)的圖象。

        3°再將所得圖象向上平移一個(gè)單位,可得的圖象……(12分)

       (其它的變換方法正確相應(yīng)給分)

    17.解:(1)三棱柱ABC―A1B1C1為直三棱柱

        底面ABC

        又AC面ABC

        AC

        又

       

        又AC面B1AC

        …………(6分)

       (2)三棱柱ABC―A1B1C1為直三棱柱

        底面ABC

        為直線B1C與平面ABC所成的角,即

        過(guò)點(diǎn)A作AM⊥BC于M,過(guò)M作MN⊥B1C于N,加結(jié)AN。

        ∴平面BB1CC1⊥平面ABC

        ∴AM⊥平面BB1C1C

        由三垂線定理知AN⊥B1C從而∠ANM為二面角B―B1C―A的平面角。

        設(shè)AB=BB1=

        在Rt△B1BC中,BC=BB1

      

        即二面角B―B1C―A的正切值為 …………(文12分)

       (3)(理科)過(guò)點(diǎn)A1作A1H⊥平面B1AC于H,連結(jié)HC,則

        ∠A1CH為直線A1C與平面B1AC所成的角

        由

       

      在Rt………………(理12分)

    18.解:(文科)(1)從口袋A中摸出的3個(gè)球?yàn)樽罴衙蚪M合即為從口袋A中摸出2個(gè)紅球和1個(gè)黑球,其概率為

      ………………………………(6分)

       (2)由題意知:每個(gè)口袋中摸球?yàn)樽罴呀M合的概率相同,從5個(gè)口袋中摸球可以看成5次獨(dú)立重復(fù)試難,故所求概率為

      ……………………………………(12分)

       (理科)(1)設(shè)用隊(duì)獲第一且丙隊(duì)獲第二為事件A,則

      ………………………………………(6分)

       (2)可能的取值為0,3,6;則

      甲兩場(chǎng)皆輸:

      甲兩場(chǎng)只勝一場(chǎng):

    <button id="9sxfz"><strong id="9sxfz"></strong></button><strong id="9sxfz"><font id="9sxfz"><pre id="9sxfz"></pre></font></strong>
      <strike id="9sxfz"></strike>

              <td id="rjvax"><strong id="rjvax"></strong></td>

              1. 0

                3

                6

                P

                 

                  的分布列為

                 

                 

                 

                  …………………………(12分)

                19.解:(文科)(1)由

                  函數(shù)的定義域?yàn)椋ǎ?,1)

                  又

                  

                  …………………………………(6分)

                   (2)任取、

                  

                  

                  

                  又

                  ……(13分)

                   (理科)(1)由

                  

                又由函數(shù)

                  當(dāng)且僅當(dāng)

                  

                  綜上…………………………………………………(6分)

                   (2)

                  

                ②令

                綜上所述實(shí)數(shù)m的取值范圍為……………(13分)

                20.解:(1)的解集有且只有一個(gè)元素

                  

                  又由

                  

                  當(dāng)

                  當(dāng)

                     …………………………………(文6分,理5分)

                   (2)         ①

                    ②

                由①-②得

                …………………………………………(文13分,理10分)

                   (3)(理科)由題設(shè)

                       

                       綜上,得數(shù)列共有3個(gè)變號(hào)數(shù),即變號(hào)數(shù)為3.……………………(理13分)

                21.解(1)

                 ………………………………(文6分,理4分)(2)(2)當(dāng)AB的斜率為0時(shí),顯然滿足題意

                當(dāng)AB的斜率不為0時(shí),設(shè),AB方程為代入橢圓方程

                整理得

                 

                綜上可知:恒有.………………………………(文13分,理9分)