題目列表(包括答案和解析)
記函數f(x)的定義域為D,若存在,使
成立,則稱
為坐標的點為函數f(x)圖象上的不動點.
(1)若函數圖象上有兩個關于原點對稱的不動點,求a,b應滿足的條件;
(2)在(1)的條件下,若a=8,記函數f(x) 圖象上有兩個不動點分別為A1,A2,P為函數f(x)圖象上的另一點,其縱坐標>3,求點P到直線A1A2距離的最小值及取得最小值時的坐標;
(3)下述命題:“若定義在R上的奇函數f(x)圖象上存在有限個不動點,則不動點有奇數個”是否正確?若正確,給予證明;若不正確,請舉一反例.
(1)若函數f(x)=的圖象上有兩個關于原點對稱的不動點,求a、b滿足的條件;
(2)在(1)的條件下,若a=8,記函數f(x)圖象上的兩個不動點分別為A、A′,P為函數f(x)的圖象上的另一點,且其縱坐標yP>3,求點P到直線AA′距離的最小值及取得最小值時點P的坐標.
(3)命題“若定義在R上的奇函數f(x)的圖象上存在有限個不動點,則不動點有奇數個”是否正確?若正確,試給予證明,并舉出一例;若不正確,試舉一反例說明.
設函數f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數f(x)圖像上的不動點.
(Ⅰ)若函數f(x)=圖像上有兩點關于原點對稱的不動點,求a、b應滿足的條件;
(Ⅱ)在(Ⅰ)的條件下,若a=8,記函數f(x)圖像上的兩個不動點分別為A、B,M為函數圖像上的另一點,且其縱坐標yM>3,求點M到直線AB距離的最小值及取得最小值時M點的坐標;
(Ⅲ)下述命題“若定義在R上的奇函數f(x)圖像上存在有限個不動點,則不動點有奇數個”是否正確?若正確,請給予證明,并舉出一例;若不正確,請舉一反例說明.
3x+a | x+b |
一、填空題
1. 2.
3.既不充分條件又不必要條件 4.[-4,-π]
[0,π]
5. 6.6 7.
8.2個 9.等腰直角三角形
10. 11.(-3,4),(-1,2)
12.①、②、⑤
13.
14.C
二、解答題
15.(本小題滿分14分)
解:(1)設由
得
它的解集為(1,3)得方程的兩根為1和3且a<0
即
……(1)
……3分
有等根得
……(2)
……6分
由(1)(2)及得
故的解析式為
……8分
(2)由
及
……10分
由
……12分
解得 ……14分
16.(本小題滿分14分)
解:由得
,
………………………………2分
又
, ……………………………………6分
由得
, …………………………10分
.
……14分
17.(本小題滿分15分).
已知二次函數的二次項系數為
,且不等式
的解集為
.
(1)若方程有兩個相等的根,求
的解析式;
(2)若的最大值為正數,求
的取值范圍.
解:(1)設由
得
它的解集為(1,3)得方程的兩根為1和3且a<0
即
……(1)
……3分
有等根得
……(2)
……6分
由(1)(2)及得
故的解析式為
……8分
(2)由
及
……10分
由
……12分
解得 ……15分
18解:(1)當m=2時,A=(-2,2),B=(-1,3)∴ AB=(-1,2).……5分
(2)當m<0時,B=(1+m,1-m)
要使BA,必須
,此時
m
當m=0時,B=,B
A;適合
……10分
當m>0時,B=(1-m,m+1)
要使BA,必須
,此時0<m≤1. ……13分
∴綜上可知,使BA的實數m的取值范圍為[-1,1] ……15分
法2
要使BA,必須
,此時
m
1; ……13分
∴使BA的實數m的取值范圍為[-1,1] ……15分
18.(本小題滿分15分)
(1)解:由得
,
. ………………2分
設
=<0(討論a>1和0<a<1),
得f(x)為R上的增函數. ………………5分
(2)由, …………7分
即得
, ………………9分
得1<m<.
………………10分
(3)f(x)在R上為增函數)f(x) 當時)f(x)-4的值恒為負數, ………13分
而f(x)在R上單調遞增得f(2)-40,
………………15分
19.(本小題滿分16分)
解:(1)∵f(x+1)為偶函數,
∴恒成立,
即(
∴.
∵函數f(x)的圖象與直線y=x相切,
∴二次方程有兩相等實數根,
∴
………………6分
(2)
………………8分
即為方程
的兩根
.
………………11分
∵m<n且.
故當;
當k>1時,
當k=1時,[m,n]不存在. ………………16分
20.(本小題滿分16分)
解:(1)若為函數f(x)不動點,則有
,
整理得 ①
………………2分
根據題意可判斷方程①有兩個根,且這兩個根互為相反數,得
>
,
<0
所以b=3 ,a>0 ………………4分
而 ,所以
.
即b=3,a>0,且a≠9. ………………5分
(2)在(1)的條件下,當a=8時,.
由 ,解得兩個不動點為
,……6分
設點P(x ,y),則y>3 ,即 >3解得x<-3 .
………………8分
設點P(x,y)到直線A
.
………………10分
當且僅當,即x=―4時,取等號,此時P(―4,4). ……12分
(3)命題正確. ………………13分
因為f(x)定義在R上的奇函數,所以f(―0)=―f(0) ,所以0是奇函數f(x)的一個不動點.
設c≠0是奇函數f(x)的一個不動點,則f(c)=c
,由,所以―c也是f (x)的一個不動點.
所以奇函數f(x)的非零不動點如果存在,則必成對出現(xiàn),故奇函數f(x)的不動點數目是奇數個. ………………16分
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com