亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    零點(diǎn)存在性定理:如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的一條曲線.并且有.那么函數(shù)在區(qū)間內(nèi)有零點(diǎn).既存在.使得.這個(gè)也就是方程的根. 查看更多

     

    題目列表(包括答案和解析)

    函數(shù)是函數(shù)的導(dǎo)函數(shù),且函數(shù)在點(diǎn)

    的切線為,如果函數(shù)

    區(qū)間上的圖象如圖所示,且,那么(      )

     

     

    A.的極大值點(diǎn)

    B.=的極小值點(diǎn)

    C.不是極值點(diǎn)

    D.極值點(diǎn)

     

    查看答案和解析>>

    函數(shù)是函數(shù)的導(dǎo)函數(shù),且函數(shù)在點(diǎn)

    的切線為,如果函數(shù)

    區(qū)間上的圖象如圖所示,且,那么(     )

     

     

    A.的極大值點(diǎn)

    B.=的極小值點(diǎn)

    C.不是極值點(diǎn)

    D.極值點(diǎn)

     

    查看答案和解析>>

    函數(shù)是函數(shù)的導(dǎo)函數(shù),且函數(shù)在點(diǎn)處的切線為,如果函數(shù)在區(qū)間上的圖象如圖所示,且,那么        (    )

           A.的極大值點(diǎn)

           B.=的極小值點(diǎn)

           C.不是極值點(diǎn)

           D.極值點(diǎn)

    查看答案和解析>>

    函數(shù)是函數(shù)的導(dǎo)函數(shù),且函數(shù)在點(diǎn)處的切線為,如果函數(shù)在區(qū)間上的圖象如圖所示,且,那么(    )

           A.的極大值點(diǎn)

           B.=的極小值點(diǎn)

           C.不是極值點(diǎn)

           D.極值點(diǎn)

    查看答案和解析>>

     函數(shù)是函數(shù)的導(dǎo)函數(shù),且函數(shù)在點(diǎn)處的切線為,如果函數(shù)在區(qū)間上的圖象如圖所示,且,那么正確的是

    A.的極大值點(diǎn)

        B.=的極小值點(diǎn)

        C.不是極值點(diǎn)

        D.極值點(diǎn)

     

    查看答案和解析>>

                               2008年7月

    【課前預(yù)習(xí)】

    答案: 1、;  2、B.試題分析,可求得:。易知函數(shù)的零點(diǎn)所在區(qū)間為。

     3、;   4、-4。

    四.典例解析

    題型1:方程的根與函數(shù)零點(diǎn)

    例1. 分析:利用函數(shù)零點(diǎn)的存在性定理或圖像進(jìn)行判斷。

    解析:(1)方法一:

    方法二:

    解得,

    所以函數(shù)。

    (2)∵,

         ∴

    (3)∵,

           ,

         ∴,故存在零點(diǎn)。

    評(píng)析:函數(shù)的零點(diǎn)存在性問(wèn)題常用的辦法有三種:一是定理;二是用方程;三是用圖像

     

    例2. 解析:(1)方法一令則根據(jù)選擇支可以求得<0;<0;>0.因?yàn)?sub><0可得零點(diǎn)在(2,3)內(nèi)選C

    方法二:在同一平面直角坐標(biāo)系中,畫出函數(shù)y=lgx與y=-x+3的圖象(如圖)。它們的交點(diǎn)橫坐標(biāo),顯然在區(qū)間(1,3)內(nèi),由此可排除A,D至于選B還是選C,由于畫圖精確性的限制,單憑直觀就比較困難了。實(shí)際上這是要比較與2的大小。當(dāng)x=2時(shí),lgx=lg2,3-x=1。由于lg2<1,因此>2,從而判定∈(2,3),故本題應(yīng)選C

    (2)原方程等價(jià)于

    構(gòu)造函數(shù),作出它們的圖像,易知平行于x軸的直線與拋物線的交點(diǎn)情況可得:

    ①當(dāng)時(shí),原方程有一解;

    ②當(dāng)時(shí),原方程有兩解;

    ③當(dāng)時(shí),原方程無(wú)解。

    點(diǎn)評(píng):圖象法求函數(shù)零點(diǎn),考查學(xué)生的數(shù)形結(jié)合思想。本題是通過(guò)構(gòu)造函數(shù)用數(shù)形結(jié)合法求方程lgx+x=3解所在的區(qū)間。數(shù)形結(jié)合,要在結(jié)合方面下功夫。不僅要通過(guò)圖象直觀估計(jì),而且還要計(jì)算的鄰近兩個(gè)函數(shù)值,通過(guò)比較其大小進(jìn)行判斷

    題型2:零點(diǎn)存在性定理

    例3.解析:(1)函數(shù)f(x)=x-ln(x+m),x∈(-m,+∞)連續(xù),且

    當(dāng)x∈(-m,1-m)時(shí),f (x)<0,f(x)為減函數(shù),f(x)>f(1-m)

    當(dāng)x∈(1-m, +∞)時(shí),f (x)>0,f(x)為增函數(shù),f(x)>f(1-m)

    根據(jù)函數(shù)極值判別方法,f(1-m)=1-m為極小值,而且

    對(duì)x∈(-m, +∞)都有f(x)≥f(1-m)=1-m

    故當(dāng)整數(shù)m≤1時(shí),f(x) ≥1-m≥0

    (2)證明:由(I)知,當(dāng)整數(shù)m>1時(shí),f(1-m)=1-m<0,

    函數(shù)f(x)=x-ln(x+m),在 上為連續(xù)減函數(shù).

    由所給定理知,存在唯一的

    而當(dāng)整數(shù)m>1時(shí),

    類似地,當(dāng)整數(shù)m>1時(shí),函數(shù)f(x)=x-ln(x+m),在 上為連續(xù)增函數(shù)且 f(1-m)與異號(hào),由所給定理知,存在唯一的

    故當(dāng)m>1時(shí),方程f(x)=0在內(nèi)有兩個(gè)實(shí)根。

    點(diǎn)評(píng):本題以信息給予的形式考察零點(diǎn)的存在性定理。解決該題的解題技巧主要在區(qū)間的放縮和不等式的應(yīng)用上。

    例4. 解析:由零點(diǎn)存在性定理可知選項(xiàng)D不正確;對(duì)于選項(xiàng)B,可通過(guò)反例“在區(qū)間上滿足,但其存在三個(gè)解”推翻;同時(shí)選項(xiàng)A可通過(guò)反例“在區(qū)間上滿足,但其存在兩個(gè)解”;選項(xiàng)D正確,見(jiàn)實(shí)例“在區(qū)間上滿足,但其不存在實(shí)數(shù)解”。

    點(diǎn)評(píng):該問(wèn)題詳細(xì)介紹了零點(diǎn)存在性定理的理論基礎(chǔ)。

    題型3:二分法的概念

    例5. 解析:如果函數(shù)在某區(qū)間滿足二分法題設(shè),且在區(qū)間內(nèi)存在兩個(gè)及以上的實(shí)根,二分法只可能求出其中的一個(gè),只要限定了近似解的范圍就可以得到函數(shù)的近似解,二分法的實(shí)施滿足零點(diǎn)存在性定理,在區(qū)間內(nèi)一定存在零點(diǎn),甚至有可能得到函數(shù)的精確零點(diǎn)。

    點(diǎn)評(píng):該題深入解析了二分法的思想方法。

     

    例6.解析:由四舍五入的原則知道,當(dāng)時(shí),精度達(dá)到。此時(shí)差限是0.0005,選項(xiàng)為C。

    點(diǎn)評(píng):該題考察了差限的定義,以及它對(duì)精度的影響。

    題型4:應(yīng)用“二分法”求函數(shù)的零點(diǎn)和方程的近似解

    例7. 解析:原方程即。令,

    用計(jì)算器做出如下對(duì)應(yīng)值表

    x

    -2

    -1

    0

    1

    2

    f(x)

    2.5820

    3.0530

    27918

    1.0794

    -4.6974

    觀察上表,可知零點(diǎn)在(1,2)內(nèi)

    取區(qū)間中點(diǎn)=1.5,且,從而,可知零點(diǎn)在(1,1.5)內(nèi);

    再取區(qū)間中點(diǎn)=1.25,且,從而,可知零點(diǎn)在(1.25,1.5)內(nèi);

    同理取區(qū)間中點(diǎn)=1.375,且,從而,可知零點(diǎn)在(1.25,1.375)內(nèi);

    由于區(qū)間(1.25,1.375)內(nèi)任一值精確到0.1后都是1.3。故結(jié)果是1.3。

    點(diǎn)評(píng):該題系統(tǒng)的講解了二分法求方程近似解的過(guò)程,通過(guò)本題學(xué)會(huì)借助精度終止二分法的過(guò)程。

    例8. 分析:本例除借助計(jì)算器或計(jì)算機(jī)確定方程解所在的大致區(qū)間和解的個(gè)數(shù)外,你是否還可以想到有什么方法確定方程的根的個(gè)數(shù)?

    略解:圖象在閉區(qū)間,上連續(xù)的單調(diào)函數(shù),在,上至多有一個(gè)零點(diǎn)。

    點(diǎn)評(píng):①第一步確定零點(diǎn)所在的大致區(qū)間,,可利用函數(shù)性質(zhì),也可借助計(jì)算機(jī)或計(jì)算器,但盡量取端點(diǎn)為整數(shù)的區(qū)間,盡量縮短區(qū)間長(zhǎng)度,通常可確定一個(gè)長(zhǎng)度為1的區(qū)間;

    ②建議列表樣式如下:

    零點(diǎn)所在區(qū)間

    中點(diǎn)函數(shù)值

    區(qū)間長(zhǎng)度

    [1,2]

    >0

    1

    [1,1.5]

    <0

    0.5

    [1.25,1.5]

    <0

    0.25

    如此列表的優(yōu)勢(shì):計(jì)算步數(shù)明確,區(qū)間長(zhǎng)度小于精度時(shí),即為計(jì)算的最后一步。

    題型5:一元二次方程的根與一元二次函數(shù)的零點(diǎn)

    例9. 分析:從二次方程的根分布看二次函數(shù)圖像特征,再根據(jù)圖像特征列出對(duì)應(yīng)的不等式(組)。

    解析:(1)設(shè)

    ,知,

    (2)令

    ,∴,∴

    綜上,

    評(píng)析:二次方程、二次函數(shù)、二次不等式三者密不可分。

    例10.解析:設(shè),則的二根為。

    (1)由,可得  ,即,

           兩式相加得,所以,;

    (2)由, 可得 

    ,所以同號(hào)。

    ,等價(jià)于

    ,

    即  

    解之得 

    點(diǎn)評(píng):條件實(shí)際上給出了的兩個(gè)實(shí)數(shù)根所在的區(qū)間,因此可以考慮利用上述圖像特征去等價(jià)轉(zhuǎn)化。

    【課外作業(yè)】

    1. 答案:A,令即可;

    2. 答案:B;

    3.答案:C,由可得關(guān)于對(duì)稱,∴,∴,∴,∵,∴。

    4、 答案:D, ∵,∴, ∴

    5. 答案:C,先求出,根據(jù)單調(diào)性求解;

    五.思維總結(jié)

    1.函數(shù)零點(diǎn)的求法:

    ①(代數(shù)法)求方程的實(shí)數(shù)根;

    ②(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn)。

    2.解決二次函數(shù)的零點(diǎn)分布問(wèn)題要善于結(jié)合圖像,從判別式、韋達(dá)定理、對(duì)稱軸、區(qū)間端點(diǎn)函數(shù)值的正負(fù)、二次函數(shù)圖像的開(kāi)口方向等方面去考慮使結(jié)論成立的所有條件。函數(shù)與方程、不等式聯(lián)系密切,聯(lián)系的方法就是數(shù)形結(jié)合。

     

     


    同步練習(xí)冊(cè)答案