亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    21.直線AB 過(guò)拋物線 的焦點(diǎn)F.并與其相交于A.B兩點(diǎn).Q是線段AB的中點(diǎn).M是拋物線的準(zhǔn)線與y軸的交點(diǎn).O是坐標(biāo)原點(diǎn). 查看更多

     

    題目列表(包括答案和解析)

    (本題滿分14分)

    已知橢圓的左右焦點(diǎn)為,拋物線C:以F2為焦點(diǎn)且與橢圓相交于點(diǎn)M,直線F1M與拋物線C相切。

    (Ⅰ)求拋物線C的方程和點(diǎn)M的坐標(biāo);

    (Ⅱ)過(guò)F2作拋物線C的兩條互相垂直的弦AB、DE,設(shè)弦AB、DE的中點(diǎn)分別為F、N,求證直線FN恒過(guò)定點(diǎn);

     

    查看答案和解析>>

    (本題滿分14分)
    已知橢圓的左右焦點(diǎn)為,拋物線C:以F2為焦點(diǎn)且與橢圓相交于點(diǎn)M,直線F1M與拋物線C相切。
    (Ⅰ)求拋物線C的方程和點(diǎn)M的坐標(biāo);
    (Ⅱ)過(guò)F2作拋物線C的兩條互相垂直的弦AB、DE,設(shè)弦AB、DE的中點(diǎn)分別為F、N,求證直線FN恒過(guò)定點(diǎn);

    查看答案和解析>>

    (本小題滿分14分)

    已知拋物線的焦點(diǎn)為F,A是拋物線上橫坐標(biāo)為4、且位于軸上方的點(diǎn),A到拋物線準(zhǔn)線的距離等于5.過(guò)AAB垂直于軸,垂足為B,OB的中點(diǎn)為M.

    (1)求該拋物線的方程;

    (2)過(guò)M,垂足為N,求點(diǎn)N的坐標(biāo);

    (3)以M為圓心,MB為半徑作圓M,當(dāng)軸上一動(dòng)點(diǎn)時(shí),討論直線AK與圓M的位置關(guān)系.

    查看答案和解析>>

    (本小題滿分14分)

    已知橢圓的焦點(diǎn)F與拋物線C:的焦點(diǎn)關(guān)于直線x-y=0

    對(duì)稱.

        (Ⅰ)求拋物線的方程;

        (Ⅱ)已知定點(diǎn)A(a,b),B(-a,0)(ab),M是拋物線C上的點(diǎn),設(shè)直線AM,

    BM與拋物線的另一交點(diǎn)為.求證:當(dāng)M點(diǎn)在拋物線上變動(dòng)時(shí)(只要存在

    )直線恒過(guò)一定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).

     

    查看答案和解析>>

    (本小題滿分14分)
    已知橢圓的焦點(diǎn)F與拋物線C:的焦點(diǎn)關(guān)于直線x-y=0
    對(duì)稱.
    (Ⅰ)求拋物線的方程;
    (Ⅱ)已知定點(diǎn)A(a,b),B(-a,0)(ab),M是拋物線C上的點(diǎn),設(shè)直線AM,
    BM與拋物線的另一交點(diǎn)為.求證:當(dāng)M點(diǎn)在拋物線上變動(dòng)時(shí)(只要存在
    )直線恒過(guò)一定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).

    查看答案和解析>>

    一、選擇題答題卡

    題號(hào)

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    答案

    B

    D

    D

    D

    A

    B

    B

    C

    B

    C

    二、填空題:

    11. ___2____          12.__29_______          13.___ _____           14___2____                    15. ____ (2,2) ___   (4,402)

    三、解答題:

    16.(本小題滿分12分)

    解:(I).………(2分)

    因此,函數(shù)圖象的對(duì)稱中心為,……………………………………(4分)

    對(duì)稱軸為.…………………………………………………………(6分) 

    (Ⅱ)因?yàn)?sub>在區(qū)間上為增函數(shù),在區(qū)間上為減函數(shù),又,……(10分)

    故函數(shù)在區(qū)間上的最大值為,最小值為-1.……………….(12分)

     

    17.解:(I)∵z,y可能的取值為2、3、4,

         ∴,

           ∴,且當(dāng)x=2,y=4,或x=4,y=2時(shí),.……………………  (3分)

           因此,隨機(jī)變量的最大值為3.

           ∵有放回地抽兩張卡片的所有情況有3×3=9種,

           ∴

      答:隨機(jī)變量的最大值為3,事件“取得最大值”的概率為. ……………(5分)

         (II) 的所有取值為0,1,2,3.

           ∵=0時(shí),只有x=3,y=3這一種情況,

             =1時(shí),有x=2,y=2或x=3,y=2或x=3,y=4或x=4,y=4四種情況,

             =3時(shí),有x=2,y=3或x=4,y=3兩種情況.

           ∴,,………………………………(10分)

    則隨機(jī)變量的分布列為:

    0

    1

    2

    3

    P

     

      因此,數(shù)學(xué)期望.…………………….(12分)

    18.(本小題滿分12分)

     

    解:(I)∵A1 A⊥平面ABC,BCC平面ABC,

          ∴A1 A⊥BC.

          ∵,AB=AC=2

          ∴∠BAC=60°,∴△ABC為正三角形,即AD⊥BC.…………………(3分)

          又A1 A∩AD=A,∴BC⊥平面A1AD,

          ∵,∴平面A1 AD⊥平面BCC1B1.………………… (6分)

        (Ⅱ)如圖,建立空間直角坐標(biāo)系,

        則A(0,0,0),B(2,0,0),C(1,,0),

    A1(0,0,  ),B1(1,0,),

          ∴

         顯然,平面ABB1A1的法向量為m=(0,1,0),

         設(shè)平面BCC1B1的法向量為n=(m,n,1),則

       ∴,

         ,…………………………………………………………………(10分)

         

         即二面角A-BB1-C為arccos…………………………………………(12分)

    19.(本小題滿分13分)    ,

     

    解:(I)依題意,得, ,…………………………… (3分)

    (Ⅱ) 依題意,棋子跳到第n站(2≤n≤99)有兩種可能:第一種,棋子先到第一n-2站,又?jǐn)S出3或4或5或6,其概率為;第二種,棋子先到第n -1站,又?jǐn)S出1或2,其概率為………………………………………… (5分)

    …………………… (8分)

          (Ⅲ)由(Ⅱ)可知數(shù)列(1≤n≤99)是首項(xiàng)為,公比為的等比數(shù)列……………………………………………………………………… (10分)

    于是有

         因此,玩該游戲獲勝的概率為……………………………… (13分)

     

    20.(本小題滿分12分)

        解:(I)由題意知

        是等差數(shù)列.…………………………………………2分

       

        ………………………………5分

       (II)由題設(shè)知

       

        是等差數(shù)列.…………………………………………………………8分

       

        ………………………………10分

        ∴當(dāng)n=1時(shí),

        當(dāng)

        經(jīng)驗(yàn)證n=1時(shí)也適合上式. …………………………12分

     

    21.(本題14分)

    解:(Ⅰ) 由條件得 ,設(shè)直線AB的方程為

     

    ∴由韋達(dá)定理得

    從而有

    (Ⅱ)拋物線方程可化為

    ∴切線NA的方程為:

    切線NB的方程為:

    從而可知N點(diǎn)、Q點(diǎn)的橫坐標(biāo)相同但縱坐標(biāo)不同。

     

    又由(Ⅰ)知

    (Ⅲ)由

    由于

            

    從而

    而p>0,∴1≤p≤2

    又p是不為1的正整數(shù)

    ∴p=2

    故拋物線的方程:

    w.w.w.k.s.5.u.c.o.m         


    同步練習(xí)冊(cè)答案