亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    [解](Ⅰ)∵.依題意:.∴.-1′ 查看更多

     

    題目列表(包括答案和解析)

    如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

    (Ⅰ)證明PC⊥AD;

    (Ⅱ)求二面角A-PC-D的正弦值;

    (Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

     

    【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

    (1)證明:易得,于是,所以

    (2) ,設(shè)平面PCD的法向量,

    ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

    所以二面角A-PC-D的正弦值為.

    (3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得.

    ,故 

    所以,,解得,即.

    解法二:(1)證明:由,可得,又由,,故.又,所以.

    (2)如圖,作于點H,連接DH.由,,可得.

    因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

    因此所以二面角的正弦值為.

    (3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

    中,由,,

    可得.由余弦定理,,

    所以.

     

    查看答案和解析>>

    已知,函數(shù)

    (1)當(dāng)時,求函數(shù)在點(1,)的切線方程;

    (2)求函數(shù)在[-1,1]的極值;

    (3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

    【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運用。(1)中,那么當(dāng)時,  又    所以函數(shù)在點(1,)的切線方程為;(2)中令   有 

    對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

    解:(Ⅰ)∵  ∴

    ∴  當(dāng)時,  又    

    ∴  函數(shù)在點(1,)的切線方程為 --------4分

    (Ⅱ)令   有 

    ①         當(dāng)

    (-1,0)

    0

    (0,

    ,1)

    +

    0

    0

    +

    極大值

    極小值

    的極大值是,極小值是

    ②         當(dāng)時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

    綜上所述   時,極大值為,無極小值

    時  極大值是,極小值是        ----------8分

    (Ⅲ)設(shè)

    求導(dǎo),得

    ,    

    在區(qū)間上為增函數(shù),則

    依題意,只需,即 

    解得  (舍去)

    則正實數(shù)的取值范圍是(,

     

    查看答案和解析>>

    設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).  

    (1)求正實數(shù)a的取值范圍;

    (2)比較的大小,說明理由;

    (3)求證:(n∈N*, n≥2)

    【解析】第一問中,利用

    解:(1)由已知:,依題意得:≥0對x∈[1,+∞恒成立

    ∴ax-1≥0對x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

    (2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),

    ∴n≥2時:f()=

      

     (3)  ∵   ∴

     

    查看答案和解析>>

    山東省《體育高考方案》于2012年2月份公布,方案要求以學(xué)校為單位進行體育測試,某校對高三1班同學(xué)按照高考測試項目按百分制進行了預(yù)備測試,并對50分以上的成績進行統(tǒng)計,其頻率分布直方圖如圖所示,若90~100分?jǐn)?shù)段的人數(shù)為2人.

    (Ⅰ)請估計一下這組數(shù)據(jù)的平均數(shù)M;

    (Ⅱ)現(xiàn)根據(jù)初賽成績從第一組和第五組(從低分段到高分段依次為第一組、第二組、…、第五組)中任意選出兩人,形成一個小組.若選出的兩人成績差大于20,則稱這兩人為“幫扶組”,試求選出的兩人為“幫扶組”的概率.

    【解析】本試題主要考查了概率的運算和統(tǒng)計圖的運用。

    (1)由由頻率分布直方圖可知:50~60分的頻率為0.1, 60~70分的頻率為0.25, 70~80分的頻率為0.45, 80~90分的頻率為0.15, 90~100分的頻率為0.05,然后利用平均值公式,可知這組數(shù)據(jù)的平均數(shù)M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73(分)

    (2)中利用90~100分?jǐn)?shù)段的人數(shù)為2人,頻率為0.05;得到總參賽人數(shù)為40,然后得到0~60分?jǐn)?shù)段的人數(shù)為40×0.1=4人,第五組中有2人,這樣可以得到基本事件空間為15種,然后利用其中兩人成績差大于20的選法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8種,得到概率值

    解:(Ⅰ)由頻率分布直方圖可知:50~60分的頻率為0.1, 60~70分的頻率為0.25, 70~80分的頻率為0.45, 80~90分的頻率為0.15, 90~100分的頻率為0.05; ……………2分

    ∴這組數(shù)據(jù)的平均數(shù)M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73(分)…4分

    (Ⅱ)∵90~100分?jǐn)?shù)段的人數(shù)為2人,頻率為0.05;

    ∴參加測試的總?cè)藬?shù)為=40人,……………………………………5分

    ∴50~60分?jǐn)?shù)段的人數(shù)為40×0.1=4人, …………………………6分

    設(shè)第一組50~60分?jǐn)?shù)段的同學(xué)為A1,A2,A3,A4;第五組90~100分?jǐn)?shù)段的同學(xué)為B1,B2

    則從中選出兩人的選法有:(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共15種;其中兩人成績差大于20的選法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8種 …………………………11分

    則選出的兩人為“幫扶組”的概率為

     

    查看答案和解析>>

    現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.

    (Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;

    (Ⅱ)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;

    (Ⅲ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機變量的分布列與數(shù)學(xué)期望.

    【解析】依題意,這4個人中,每個人去參加甲游戲的概率為,去參加乙游戲的概率為.

    設(shè)“這4個人中恰有i人去參加甲游戲”為事件

    .

    (1)這4個人中恰有2人去參加甲游戲的概率

    (2)設(shè)“這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則.由于互斥,故

    所以,這個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為.

    (3)的所有可能取值為0,2,4.由于互斥,互斥,故

        

    所以的分布列是

    0

    2

    4

    P

    隨機變量的數(shù)學(xué)期望.

     

    查看答案和解析>>


    同步練習(xí)冊答案