亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    ∴. 令得:.又.∴. 查看更多

     

    題目列表(包括答案和解析)

     

         過點(diǎn)作曲線的切線,切點(diǎn)為,設(shè)軸上的投影是點(diǎn);又過點(diǎn)作曲線的切線,切點(diǎn)為,設(shè)軸上的投影是點(diǎn)依此下去,得到一系列點(diǎn),;設(shè)它們的橫坐標(biāo)構(gòu)成數(shù)列為.

    (1)求數(shù)列的通項(xiàng)公式;

    (2)求證:;

    (3)當(dāng)時(shí),令求數(shù)列的前項(xiàng)和.

     

     

     

     

     

     

     

    查看答案和解析>>

    仔細(xì)閱讀下面問題的解法:

        設(shè)A=[0, 1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍。

        解:由已知可得  a 21-x

            令f(x)= 21-x ,∵不等式a <21-x在A上有解,

            ∴a <f(x)在A上的最大值.

            又f(x)在[0,1]上單調(diào)遞減,f(x)max =f(0)=2.  ∴實(shí)數(shù)a的取值范圍為a<2.

    研究學(xué)習(xí)以上問題的解法,請解決下面的問題:

    (1)已知函數(shù)f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數(shù)及反函數(shù)的定義域A;

    (2)對于(1)中的A,設(shè)g(x)=,x∈A,試判斷g(x)的單調(diào)性(寫明理由,不必證明);

    (3)若B ={x|>2x+a–5},且對于(1)中的A,A∩B≠F,求實(shí)數(shù)a的取值范圍。

    查看答案和解析>>

    仔細(xì)閱讀下面問題的解法:
    設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍。
    解:由已知可得  a21-x
    令f(x)=21-x,∵不等式a<21-x在A上有解,
    ∴a<f(x)在A上的最大值.
    又f(x)在[0,1]上單調(diào)遞減,f(x)max ="f(0)=2. " ∴實(shí)數(shù)a的取值范圍為a<2.
    研究學(xué)習(xí)以上問題的解法,請解決下面的問題:
    (1)已知函數(shù)f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數(shù)及反函數(shù)的定義域A;
    (2)對于(1)中的A,設(shè)g(x)=,x∈A,試判斷g(x)的單調(diào)性(寫明理由,不必證明);
    (3)若B={x|>2x+a–5},且對于(1)中的A,A∩B≠F,求實(shí)數(shù)a的取值范圍。

    查看答案和解析>>

    仔細(xì)閱讀下面問題的解法:
    設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍.
    解:由已知可得  a<21-x
    令f(x)=21-x,不等式a<21-x在A上有解,
    ∴a<f(x)在A上的最大值
    又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
    ∴a<2即為所求.
    學(xué)習(xí)以上問題的解法,解決下面的問題:
    (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
    (2)對于(1)中的A,設(shè)g(x)=
    10-x
    10+x
    x∈A,試判斷g(x)的單調(diào)性;(不證)
    (3)又若B={x|
    10-x
    10+x
    >2x+a-5},若A∩B≠Φ,求實(shí)數(shù)a的取值范圍.

    查看答案和解析>>

    仔細(xì)閱讀下面問題的解法:
    設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍.
    解:由已知可得 a<21-x
    令f(x)=21-x,不等式a<21-x在A上有解,
    ∴a<f(x)在A上的最大值
    又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
    ∴a<2即為所求.
    學(xué)習(xí)以上問題的解法,解決下面的問題:
    (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
    (2)對于(1)中的A,設(shè)g(x)=數(shù)學(xué)公式x∈A,試判斷g(x)的單調(diào)性;(不證)
    (3)又若B={x|數(shù)學(xué)公式>2x+a-5},若A∩B≠Φ,求實(shí)數(shù)a的取值范圍.

    查看答案和解析>>


    同步練習(xí)冊答案