亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    又由得,,所以.即. 查看更多

     

    題目列表(包括答案和解析)

    仔細(xì)閱讀下面問題的解法:
    設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
    解:由已知可得  a<21-x
    令f(x)=21-x,不等式a<21-x在A上有解,
    ∴a<f(x)在A上的最大值
    又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
    ∴a<2即為所求.
    學(xué)習(xí)以上問題的解法,解決下面的問題:
    (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
    (2)對于(1)中的A,設(shè)g(x)=
    10-x
    10+x
    x∈A,試判斷g(x)的單調(diào)性;(不證)
    (3)又若B={x|
    10-x
    10+x
    >2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

    查看答案和解析>>

    仔細(xì)閱讀下面問題的解法:
    設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
    解:由已知可得 a<21-x
    令f(x)=21-x,不等式a<21-x在A上有解,
    ∴a<f(x)在A上的最大值
    又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
    ∴a<2即為所求.
    學(xué)習(xí)以上問題的解法,解決下面的問題:
    (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
    (2)對于(1)中的A,設(shè)g(x)=數(shù)學(xué)公式x∈A,試判斷g(x)的單調(diào)性;(不證)
    (3)又若B={x|數(shù)學(xué)公式>2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

    查看答案和解析>>

    仔細(xì)閱讀下面問題的解法:
    設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
    由已知可得  a<21-x
    令f(x)=21-x,不等式a<21-x在A上有解,
    ∴a<f(x)在A上的最大值
    又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
    ∴a<2即為所求.
    學(xué)習(xí)以上問題的解法,解決下面的問題:
    (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
    (2)對于(1)中的A,設(shè)g(x)=
    10-x
    10+x
    x∈A,試判斷g(x)的單調(diào)性;(不證)
    (3)又若B={x|
    10-x
    10+x
    >2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

    查看答案和解析>>

    已知函數(shù)f(x)=alnx-x2+1.

    (1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;

    (2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

    【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

    由已知得a-2=4,2-a=b,所以a=6,b=-4.

    第二問中,利用當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

    不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

    ∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,

    即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識來解得。

    (1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

    由已知得a-2=4,2-a=b,所以a=6,b=-4.

    (2)當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

    不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

    ∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

    令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

    ∵g′(x)=-2x+1=(x>0),

    ∴-2x2+x+a≤0在x>0時恒成立,

    ∴1+8a≤0,a≤-,又a<0,

    ∴a的取值范圍是

     

    查看答案和解析>>

    已知函數(shù)的圖像上兩相鄰最高點的坐標(biāo)分別為.(Ⅰ)求的值;(Ⅱ)在中,分別是角的對邊,且的取值范圍.

    【解析】本試題主要考查了三角函數(shù)的圖像與性質(zhì)的綜合運用。

    第一問中,利用所以由題意知:,;第二問中,,即,又,

    ,解得,

    所以

    結(jié)合正弦定理和三角函數(shù)值域得到。

    解:(Ⅰ),

    所以由題意知:;

    (Ⅱ),即,又,

    ,解得,

    所以

    因為,所以,所以

     

    查看答案和解析>>


    同步練習(xí)冊答案