亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    所以.①當(dāng)時(shí)..故是上的增函數(shù), 查看更多

     

    題目列表(包括答案和解析)

    已知函數(shù)f(x)=ex-ax,其中a>0.

    (1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

    (2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

    【解析】解:.

    當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

    于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

    當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

    故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

    綜上所述,的取值集合為.

    (Ⅱ)由題意知,

    ,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng)

    從而,

    所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

    【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

     

    查看答案和解析>>

    已知函數(shù).(

    (1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

    (2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

    【解析】第一問(wèn)中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問(wèn)中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。

    解:(1)在區(qū)間上單調(diào)遞增,

    在區(qū)間上恒成立.  …………3分

    ,而當(dāng)時(shí),,故. …………5分

    所以.                 …………6分

    (2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

    在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.   

            …………9分

    ① 若,令,得極值點(diǎn),

    當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

    當(dāng),即時(shí),同理可知,在區(qū)間上遞增,

    ,也不合題意;                     …………11分

    ② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

    要使在此區(qū)間上恒成立,只須滿足,

    由此求得的范圍是.        …………13分

    綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.

     

    查看答案和解析>>

    已知函數(shù),.

    (Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

    (Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.

    【解析】第一問(wèn)中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來(lái)分析求解。

    第二問(wèn)中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

    解:(1)

    (2)不等式 ,即,即.

    轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.

    即不等式上恒成立.

    即不等式上恒成立.

    設(shè),則.

    設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.

    在區(qū)間上是減函數(shù)。又

    故存在,使得.

    當(dāng)時(shí),有,當(dāng)時(shí),有.

    從而在區(qū)間上遞增,在區(qū)間上遞減.

    [來(lái)源:]

    所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有;

    故使命題成立的正整數(shù)m的最大值為5

     

    查看答案和解析>>

    已知,函數(shù)

    (1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;

    (2)求函數(shù)在[-1,1]的極值;

    (3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

    【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

    對(duì)a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

    解:(Ⅰ)∵  ∴

    ∴  當(dāng)時(shí),  又    

    ∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

    (Ⅱ)令   有 

    ①         當(dāng)時(shí)

    (-1,0)

    0

    (0,

    ,1)

    +

    0

    0

    +

    極大值

    極小值

    的極大值是,極小值是

    ②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無(wú)極小值。 

    綜上所述   時(shí),極大值為,無(wú)極小值

    時(shí)  極大值是,極小值是        ----------8分

    (Ⅲ)設(shè),

    對(duì)求導(dǎo),得

    ,    

    在區(qū)間上為增函數(shù),則

    依題意,只需,即 

    解得  (舍去)

    則正實(shí)數(shù)的取值范圍是(,

     

    查看答案和解析>>

    已知函數(shù)

    (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

    (Ⅱ)設(shè),若對(duì)任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.

    【解析】第一問(wèn)利用的定義域是     

    由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

    故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

    第二問(wèn)中,若對(duì)任意不等式恒成立,問(wèn)題等價(jià)于只需研究最值即可。

    解: (I)的定義域是     ......1分

                  ............. 2分

    由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

    故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

    (II)若對(duì)任意不等式恒成立,

    問(wèn)題等價(jià)于,                   .........5分

    由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),

    故也是最小值點(diǎn),所以;            ............6分

    當(dāng)b<1時(shí),;

    當(dāng)時(shí),;

    當(dāng)b>2時(shí),;             ............8分

    問(wèn)題等價(jià)于 ........11分

    解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

     

    查看答案和解析>>


    同步練習(xí)冊(cè)答案