亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (理)若點E滿足.問是否存在不平行AB的直線l與橢圓C交于M.N兩點且.若存在.求出直線l與AB夾角的范圍.若不存在.說明理由. 查看更多

     

    題目列表(包括答案和解析)

    如圖,橢圓的中心為原點O,離心率e=,一條準(zhǔn)線的方程為x=2
    (Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程.
    (Ⅱ)設(shè)動點P滿足,其中M,N是橢圓上的點.直線OM與ON的斜率之積為﹣.問:是否存在兩個定點F1,F(xiàn)2,使得|PF1|+|PF2|為定值.若存在,求F1,F(xiàn)2的坐標(biāo);若不存在,說明理由.

    查看答案和解析>>

    如圖,橢圓的中心為原點O,離心率e=,一條準(zhǔn)線的方程為x=2
    (Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程.
    (Ⅱ)設(shè)動點P滿足,其中M,N是橢圓上的點.直線OM與ON的斜率之積為-
    問:是否存在兩個定點F1,F(xiàn)2,使得|PF1|+|PF2|為定值.若存在,求F1,F(xiàn)2的坐標(biāo);若不存在,說明理由.

    查看答案和解析>>

    已知橢圓的一個焦點,對應(yīng)的準(zhǔn)線方程為,且離心率e滿足,e,成等比數(shù)列.
    (1)求橢圓的方程;
    (2)試問是否存在直線l,使l與橢圓交于不同的兩點M、N,且線段MN恰被直線平分?若存在,求出l的傾斜角的取值范圍;若不存在,請說明理由.

    查看答案和解析>>

    如圖,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.橢圓G以A、B為焦點且經(jīng)過點D.
    (Ⅰ)建立適當(dāng)坐標(biāo)系,求橢圓G的方程;
    (Ⅱ)若點E滿足=,問是否存在不平行AB的直線l與橢圓G交于M、N兩點且|ME|=|NE|,若存在,求出直線l與AB夾角正切值的范圍,若不存在,說明理由.

    查看答案和解析>>

    如圖,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.橢圓G以A、B為焦點且經(jīng)過點D.
    (Ⅰ)建立適當(dāng)坐標(biāo)系,求橢圓G的方程;
    (Ⅱ)若點E滿足=,問是否存在不平行AB的直線l與橢圓G交于M、N兩點且|ME|=|NE|,若存在,求出直線l與AB夾角正切值的范圍,若不存在,說明理由.

    查看答案和解析>>

    1.B 2.(文)B。ɡ恚〥 3.C 4.B 5.C 6.A 7.(文)A。ɡ恚〥 

    8.D 9.B 10.D 11.A 12.B 13.2

      14.(0,)  15.  16.

      17.解析:恰有3個紅球的概率

      有4個紅球的概率

      至少有3個紅球的概率

      18.解析:∵ 

     。1)最小正周期 

     。2),

      ∴ 時 ,∴ ,  ∴ a=1.

      19.解析:(甲)(1)以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間坐標(biāo)系(2,0,0),B(2,2,0),C(0,2,0)設(shè)P(0,0,2m(1,1,m), ∴ (-1,1,m),=(0,0,2m

      ∴ ,,

      ∴ 點E坐標(biāo)是(1,1,1)

     。2)∵ 平面PAD, ∴ 可設(shè)Fx,0,z=(x-1,-1,z-1)

      ∵ EF⊥平面PCB ∴ ,-1,2,0,

      ∵  ∴ ,-1,0,2,-2

      ∴ 點F的坐標(biāo)是(1,0,0),即點FAD的中點.

      (乙)(1)證明:∵ 是菱形,∠=60°是正三角形

      又∵ 

      

     。2) ∴ ∠BEM為所求二面角的平面角

      △中,60°,Rt△中,60°

      ∴ , ∴ 所求二面角的正切值是2;

     。3)

      20.解析:(1)設(shè)fx)圖像上任一點坐標(biāo)為(xy),點(xy)關(guān)于點A(0,1)的對稱點(-x,2-y)在hx)圖像上

      ∴ , ∴ ,即 

     。2)(文):,即在(0,上遞減, ∴ a≤-4

     。ɡ恚, ∵  在(0,上遞減,

      ∴ (0,時恒成立.

      即 (0,時恒成立. ∵ (0,時, ∴

      21.解析:(1)2007年A型車價為32+32×25%=40(萬元)

      設(shè)B型車每年下降d萬元,2002,2003……2007年B型車價格為:(公差為-d

      ,…… ∴ ≤40×90% ∴ 46-5d≤36 d≥2

      故每年至少下降2萬元

     。2)2007年到期時共有錢

      >33(1+0.09+0.00324+……)=36.07692>36(萬元)

      故5年到期后這筆錢夠買一輛降價后的B型車

      22.解析:(1)如圖,以AB所在直線為x軸,AB中垂線為y軸建立直角坐標(biāo)系,A(-1,0),B(1,0)

      設(shè)橢圓方程為:

      令 ∴

      ∴ 橢圓C的方程是:

     。2)(文)lAB時不符合,

      ∴ 設(shè)l

      設(shè)M,),N,,

      ∵   ∴ ,即,

      ∴ l,即 經(jīng)驗證:l與橢圓相交,

      ∴ 存在,lAB的夾角是

     。ɡ恚,,lAB時不符,

      設(shè)lykxmk≠0)

      由 

      MN存在D

      設(shè)M,),N,),MN的中點F,

      ∴ ,

      

      ∴   ∴ 

      ∴   ∴ 

      ∴ lAB的夾角的范圍是

     


    同步練習(xí)冊答案