亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    12.(理)函數(shù)的值域是( ) A.[1.2] B.[0.2] 查看更多

     

    題目列表(包括答案和解析)

    (09年豐臺區(qū)二模理)函數(shù)的值域是  (    )

           A.[-1,1]                                              B.

           C.                                           D.

    查看答案和解析>>

    (理)已知實(shí)數(shù)x、y滿足所表示的平面區(qū)域?yàn)镸。若函數(shù)
    的圖象經(jīng)過區(qū)域M,則實(shí)數(shù)k的取值范圍是                 (   )
    A.[3,5]B.[—1,1]C.[—1,3]D.

    查看答案和解析>>

    (理)已知實(shí)數(shù)x、y滿足所表示的平面區(qū)域?yàn)镸。若函數(shù)
    的圖象經(jīng)過區(qū)域M,則實(shí)數(shù)k的取值范圍是                 (   )

    A.[3,5]B.[—1,1]C.[—1,3]D.

    查看答案和解析>>

    設(shè)函數(shù)f(x)=x+
    alnxx
    ,其中a為常數(shù).
    (1)證明:對任意a∈R,y=f(x)的圖象恒過定點(diǎn);
    (2)當(dāng)a=-1時(shí),判斷函數(shù)y=f(x)是否存在極值?若存在,求出極值;若不存在,說明理由;
    (3)若對任意a∈(0,m]時(shí),y=f(x)恒為定義域上的增函數(shù),求m的最大值.

    查看答案和解析>>

    設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí)f(x)>1,且對任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y).?dāng)?shù)列{an}滿足f(an+1)=
    1f(-2-an)
    (n∈N*
    (Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
    (Ⅱ)如果存在t、s∈N*,s≠t,使得點(diǎn)(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當(dāng)n>M時(shí),a n>f(0)恒成立?若存在,求出M的最小值,若不存在,請說明理由.

    查看答案和解析>>

    1.(理)A。ㄎ模〣 2.(理)B。ㄎ模〣 3.B 4.A 5.D 

    6.(理)B (文)D 7.B 8.(理)C。ㄎ模〥 9.D 10.D 11.C

    12.(理)A (文)A 13.1或0 14. 15.10080° 16.

      17.解析:(1)的分布如下

    0

    1

    2

    P

     。2)由(1)知

      ∴ 

      18.解析:(1)以點(diǎn)為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為z軸,建立空間直角坐標(biāo)系,設(shè),a,(0,+∞).

      ∵ 三棱柱為正三棱柱,則,B,,C的坐標(biāo)分別為:(b,0,0),,,,,(0,0,a). ∴  ,,,,

     。2)在(1)條件下,不妨設(shè)b=2,則,

      又AM,N坐標(biāo)分別為(b,0,a),(,,0),(,a).

      ∴ .  ∴ 

      同理 

      ∴ △與△均為以為底邊的等腰三角形,取中點(diǎn)為P,則,為二面角的平面角,而點(diǎn)P坐標(biāo)為(1,0,),

      ∴ ,,. 同理 ,

      ∴ 

     ∴ ∠NPM=90°二面角的大小等于90°.

      19.解析:設(shè)派x名消防員前去救火,用t分鐘將火撲滅,總損失為y,則

      y=滅火勞務(wù)津貼+車輛、器械裝備費(fèi)+森林損失費(fèi)

       =125tx+100x+60(500+100t

       =

       =

       =

      

      當(dāng)且僅當(dāng),即x=27時(shí),y有最小值36450.

      故應(yīng)該派27名消防員前去救火,才能使總損失最少,最少損失為36450元.

      20.解析:(1)當(dāng)A、BC三點(diǎn)不共線時(shí),由三角形中線性質(zhì)知

      當(dāng)A,B,C三點(diǎn)共線時(shí),由在線段BC外側(cè),由x=5,因此,當(dāng)x=1或x=5時(shí),有,

      同時(shí)也滿足:.當(dāng)A、BC不共線時(shí),

    定義域?yàn)閇1,5].

     。2)(理)∵ . ∴ dyx-1=

      令 tx-3,由,

      兩邊對t求導(dǎo)得:關(guān)于t在[-2,2]上單調(diào)增.

      ∴ 當(dāng)t=2時(shí),=3,此時(shí)x=1. 當(dāng)t=2時(shí),=7.此時(shí)x=5.故d的取值范圍為[3,7].

     。ㄎ模┯,,

      ∴ 當(dāng)x=3時(shí),.當(dāng)x=1或5時(shí),

      ∴ y的取值范圍為[,3].

      21.解析:(1)令,令y=-x,則

    在(-1,1)上是奇函數(shù).

      (2)設(shè),則,而.即 當(dāng)時(shí),

      ∴ fx)在(0,1)上單調(diào)遞減.

     。3)(理)由于,

      ,,

      ∴ 

      22.解析:(理)由平面,連AH并延長并BCM

      則 由H為△ABC的垂心. ∴ AMBC

      于是 BC⊥平面OAHOHBC

      同理可證:平面ABC

      又 ,,是空間中三個(gè)不共面的向量,由向量基本定理知,存在三個(gè)實(shí)數(shù),,使得abc

      由 0bc, 同理

      ∴ .           、

      又 AHOH,

      ∴ =0

                         ②

      聯(lián)立①及②,得  ③

      又由①,得 ,,,代入③得:

      ,,

      其中,于是

      (文)(1)聯(lián)立方程ax+1=y,消去y得:  (*)

      又直線與雙曲線相交于AB兩點(diǎn), ∴

      又依題 OAOB,令A,B兩點(diǎn)坐標(biāo)分別為(,),(,),則 

      且 

    ,而由方程(*)知:代入上式得.滿足條件.

     。2)假設(shè)這樣的點(diǎn)AB存在,則lyax+1斜率a=-2.又AB中點(diǎn),上,則

      又 ,

      代入上式知 這與矛盾.

      故這樣的實(shí)數(shù)a不存在.

     


    同步練習(xí)冊答案