亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    設(shè)a.b.c.d∈R.則復(fù)數(shù)為實數(shù)的充要條件是 A.a(chǎn)d-bc = 0 B.a(chǎn)c-bd = 0 C.a(chǎn)c+bd = 0 D.a(chǎn)d+bc = 0 查看更多

     

    題目列表(包括答案和解析)

    設(shè)a、b、c、d∈R,則復(fù)數(shù)為實數(shù)的充要條件是
    Aadbc = 0                     Bacbd = 0            Cacbd = 0          Dadbc = 0

    查看答案和解析>>

    設(shè)a、bc、d∈R,則復(fù)數(shù)(a+bi)(c+di)為實數(shù)的充要條件是

    A.adbc=0         B.acbd=0         C. ac+bd=0       D.ad+bc=0

    查看答案和解析>>

    設(shè)a、b、c、d∈R,則復(fù)數(shù)(a+bi)(c+di)為實數(shù)的充要條件是
    [     ]
    A.ad-bc=0
    B.ac-bd=0
    C.ac+bd=0
    D.ad+bc=0

    查看答案和解析>>

    設(shè)a、bc、d∈R,則復(fù)數(shù)(a+bi)(c+di)為實數(shù)的充要條件是

    (A) adbc=0         (B).acbd=0         (C). ac+bd=0       (D).ad+bc=0

    查看答案和解析>>

    設(shè)a、b、c、d∈R,則復(fù)數(shù)(a+bi)(c+di)為實數(shù)的充要條件是

    A.ad-bc=0         B.ac-bd=0         C. ac+bd=0       D.ad+bc=0

    查看答案和解析>>

    一.選擇題:DCBBA  DACCA

    二.填空題:11.4x-3y-17 = 0  12.33  13.
          14.  15.

    三.解答題:

    16.(1)解:∵                                  2分
    ∴由得:,即              4分
    又∵,∴                                                                                    6分

    (2)解:                                    8分
    得:,即          10分
    兩邊平方得:,∴                                          12分

    17.方法一

    (1)證:∵CD⊥AB,CD⊥BC,∴CD⊥平面ABC                                                      2分
    又∵CDÌ平面ACD,∴平面ACD⊥平面ABC   4分

    (2)解:∵AB⊥BC,AB⊥CD,∴AB⊥平面BCD,故AB⊥BD
    ∴∠CBD是二面角C-AB-D的平面角          6分
    ∵在Rt△BCD中,BC = CD,∴∠CBD = 45°
    即二面角C-AB-D的大小為45°              8分

    (3)解:過點B作BH⊥AC,垂足為H,連結(jié)DH
    ∵平面ACD⊥平面ABC,∴BH⊥平面ACD,
    ∴∠BDH為BD與平面ACD所成的角           10分
    設(shè)AB = a,在Rt△BHD中,,

    ,∴                                                                                        12分

    方法二
    (1)同方法一                                                                                                               4分
    (2)解:設(shè)以過B點且∥CD的向量為x軸,為y軸和z軸建立如圖所示的空間直角坐標系,設(shè)AB = a,則A(0,0,a),C(0,1,0),D(1,1,0), = (1,1,0), = (0,0,a)
    平面ABC的法向量 = (1,0,0)
    設(shè)平面ABD的一個法向量為n = (x,y,z),則

    n = (1,-1,0)                           6分

    ∴二面角C-AB-D的大小為45°                                                                           8分

    (3)解: = (0,1,-a), = (1,0,0), = (1,1,0)
    設(shè)平面ACD的一個法向量是m = (x,y,z),則
    ∴可取m = (0,a,1),設(shè)直線BD與平面ACD所成角為,則向量、m的夾角為
                                                                            10分

    ,∴                                                                                        12分

    18.解:該商場應(yīng)在箱中至少放入x個其它顏色的球,獲得獎金數(shù)為,
    = 0,100,150,200
    ,,
    ,                        8分
    的分布列為

          <td id="rjvax"><strong id="rjvax"></strong></td>

            1. 0

              100

              150

              200

              P

               

              19.(1)解:設(shè)M (x,y),在△MAB中,| AB | = 2,

                                      2分
              因此點M的軌跡是以A、B為焦點的橢圓,a = 2,c = 1
              ∴曲線C的方程為.                                                                                4分

              (2)解法一:設(shè)直線PQ方程為 (∈R)
              得:                                                            6分
              顯然,方程①的,設(shè)P(x1,y1),Q(x2,y2),則有

                                                                         8分
              ,則t≥3,                                                             10分
              由于函數(shù)在[3,+∞)上是增函數(shù),∴
              ,即S≤3
              ∴△APQ的最大值為3                                                                                              12分

              解法二:設(shè)P(x1,y1),Q(x2,y2),則
              當(dāng)直線PQ的斜率不存在時,易知S = 3
              設(shè)直線PQ方程為
                得:  ①                                         6分
              顯然,方程①的△>0,則
                                                  8分
                                              10分
                  
              ,則,即S<3

              ∴△APQ的最大值為3                                                                                              12分

              20.(1)解:∵,
                                                                                       2分
              當(dāng)時,
              ∵當(dāng)時,,此時函數(shù)遞減;
              當(dāng)時,,此時函數(shù)遞增;
              ∴當(dāng)時,F(xiàn)(x)取極小值,其極小值為0.                                                          4分

              (2)解:由(1)可知函數(shù)的圖象在處有公共點,
              因此若存在的隔離直線,則該直線過這個公共點.
              設(shè)隔離直線的斜率為k,則直線方程為,即              6分
              ,可得當(dāng)時恒成立
              得:                                                                              8分
              下面證明當(dāng)時恒成立.
              ,
              ,                                                                           10分
              當(dāng)時,
              ∵當(dāng)時,,此時函數(shù)遞增;
              當(dāng)時,,此時函數(shù)遞減;
              ∴當(dāng)時,取極大值,其極大值為0.                                                        12分
              從而,即恒成立.
              ∴函數(shù)存在唯一的隔離直線.                                              13分

              21.(1)解:記
              令x = 1得:
              令x =-1得:
              兩式相減得:
                                                                                                                      2分
              當(dāng)n≥2時,
              當(dāng)n = 1時,,適合上式
                                                                                                               4分

              (2)解:
              注意到                               6分
              ,


              ,即                                             8分

              (3)解:
                  (n≥2)                                                                        10分

                       12分

                                                                     14分