亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    若存在常數(shù)k和b .使得函數(shù)和對其定義域上的任意實數(shù)x分別滿足:和.則稱直線l:為和的“隔離直線 .已知. (其中e為自然對數(shù)的底數(shù)). (1)求的極值, (2)函數(shù)和是否存在隔離直線?若存在.求出此隔離直線方程,若不存在.請說明理由. 查看更多

     

    題目列表(包括答案和解析)

    (本大題滿分13分)
    若存在常數(shù)kb (k、b∈R),使得函數(shù)對其定義域上的任意實數(shù)x分別滿足:,則稱直線l的“隔離直線”.已知 (其中e為自然對數(shù)的底數(shù)).
    (1)求的極值;
    (2)函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.



    查看答案和解析>>

    一.選擇題:DCBBA  DACCA

    二.填空題:11.4x-3y-17 = 0  12.33  13.
          14.  15.

    三.解答題:

    16.(1)解:∵                                  2分
    ∴由得:,即              4分
    又∵,∴                                                                                    6分

    (2)解:                                    8分
    得:,即          10分
    兩邊平方得:,∴                                          12分

    17.方法一

    (1)證:∵CD⊥AB,CD⊥BC,∴CD⊥平面ABC                                                      2分
    又∵CDÌ平面ACD,∴平面ACD⊥平面ABC   4分

    (2)解:∵AB⊥BC,AB⊥CD,∴AB⊥平面BCD,故AB⊥BD
    ∴∠CBD是二面角C-AB-D的平面角          6分
    ∵在Rt△BCD中,BC = CD,∴∠CBD = 45°
    即二面角C-AB-D的大小為45°              8分

    (3)解:過點B作BH⊥AC,垂足為H,連結DH
    ∵平面ACD⊥平面ABC,∴BH⊥平面ACD,
    ∴∠BDH為BD與平面ACD所成的角           10分
    設AB = a,在Rt△BHD中,,

    ,∴                                                                                        12分

    方法二
    (1)同方法一                                                                                                               4分
    (2)解:設以過B點且∥CD的向量為x軸,為y軸和z軸建立如圖所示的空間直角坐標系,設AB = a,則A(0,0,a),C(0,1,0),D(1,1,0), = (1,1,0), = (0,0,a)
    平面ABC的法向量 = (1,0,0)
    設平面ABD的一個法向量為n = (x,y,z),則

    n = (1,-1,0)                           6分

    ∴二面角C-AB-D的大小為45°                                                                           8分

    (3)解: = (0,1,-a), = (1,0,0), = (1,1,0)
    設平面ACD的一個法向量是m = (x,y,z),則
    ∴可取m = (0,a,1),設直線BD與平面ACD所成角為,則向量、m的夾角為
                                                                            10分

    ,∴                                                                                        12分

    18.解:該商場應在箱中至少放入x個其它顏色的球,獲得獎金數(shù)為
    = 0,100,150,200
    ,,
                            8分
    的分布列為

          <td id="rjvax"><strong id="rjvax"></strong></td>

                  1. 0

                    100

                    150

                    200

                    P

                     

                    19.(1)解:設M (x,y),在△MAB中,| AB | = 2,

                                            2分
                    因此點M的軌跡是以A、B為焦點的橢圓,a = 2,c = 1
                    ∴曲線C的方程為.                                                                                4分

                    (2)解法一:設直線PQ方程為 (∈R)
                    得:                                                            6分
                    顯然,方程①的,設P(x1,y1),Q(x2,y2),則有

                                                                               8分
                    ,則t≥3,                                                             10分
                    由于函數(shù)在[3,+∞)上是增函數(shù),∴
                    ,即S≤3
                    ∴△APQ的最大值為3                                                                                              12分

                    解法二:設P(x1,y1),Q(x2,y2),則
                    當直線PQ的斜率不存在時,易知S = 3
                    設直線PQ方程為
                      得:  ①                                         6分
                    顯然,方程①的△>0,則
                                                        8分
                                                    10分
                        
                    ,則,即S<3

                    ∴△APQ的最大值為3                                                                                              12分

                    20.(1)解:∵,
                                                                                             2分
                    時,
                    ∵當時,,此時函數(shù)遞減;
                    時,,此時函數(shù)遞增;
                    ∴當時,F(xiàn)(x)取極小值,其極小值為0.                                                          4分

                    (2)解:由(1)可知函數(shù)的圖象在處有公共點,
                    因此若存在的隔離直線,則該直線過這個公共點.
                    設隔離直線的斜率為k,則直線方程為,即              6分
                    ,可得時恒成立
                    得:                                                                              8分
                    下面證明時恒成立.

                    ,                                                                           10分
                    時,
                    ∵當時,,此時函數(shù)遞增;
                    時,,此時函數(shù)遞減;
                    ∴當時,取極大值,其極大值為0.                                                        12分
                    從而,即恒成立.
                    ∴函數(shù)存在唯一的隔離直線.                                              13分

                    21.(1)解:記
                    令x = 1得:
                    令x =-1得:
                    兩式相減得:
                                                                                                                            2分
                    當n≥2時,
                    當n = 1時,,適合上式
                                                                                                                     4分

                    (2)解:
                    注意到                               6分



                    ,即                                             8分

                    (3)解:
                        (n≥2)                                                                        10分

                             12分

                                                                           14分