題目列表(包括答案和解析)
(本題滿分12分)閱讀下列材料,解決數學問題.圓錐曲線具有非常漂亮的光學性質,被人們廣泛地應用于各種設計之中,比如橢圓鏡面用來制作電影放映機的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學性質,從雙曲線的一個焦點發(fā)出的光線,經過雙曲線反射后,反射光線是發(fā)散的,它們好像是從另一個焦點射出的一樣,如圖(1)所示.反比例函數的圖像是以直線
為軸,以坐標軸為漸近線的等軸雙曲線,記作C.
(Ⅰ)求曲線C的離心率及焦點坐標;
(Ⅱ)如圖(2),從曲線C的焦點F處發(fā)出的光線經雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.
(1)
(2)
(本題滿分12分)閱讀下列材料,解決數學問題.
圓錐曲線具有非常漂亮的光學性質,被人們廣泛地應用于各種設計之中,比如橢圓鏡面用來制作電影放映機的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學性質,從雙曲線的一個焦點發(fā)出的光線,經過雙曲線反射后,反射光線是發(fā)散的,它們好像是從另一個焦點射出的一樣,如右上圖所示.
反比例函數的圖像是以直線
為軸,以坐標軸為漸近線的等軸雙曲線,記作C.
(Ⅰ)求曲線C的離心率及焦點坐標;
(Ⅱ)如右下圖,從曲線C的焦點F處發(fā)出的光線經雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.
(本題滿分12分)閱讀下列材料,解決數學問題.圓錐曲線具有非常漂亮的光學性質,被人們廣泛地應用于各種設計之中,比如橢圓鏡面用來制作電影放映機的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學性質,從雙曲線的一個焦點發(fā)出的光線,經過雙曲線反射后,反射光線是發(fā)散的,它們好像是從另一個焦點射出的一樣,如圖(1)所示.反比例函數的圖像是以直線
為軸,以坐標軸為漸近線的等軸雙曲線,記作C.
(Ⅰ)求曲線C的離心率及焦點坐標;
(Ⅱ)如圖(2),從曲線C的焦點F處發(fā)出的光線經雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.
(1) (2)
一、1、D 2、A 3、B 4、D 5、B 6、C 7、A 8、D 9、A 10、C
二、11、二 12、2cm 13、1 14、49720, 15、5www.ks5 u.com
三、16、解:
(1)……3分
,得
……………………………5分
(2)由(1)得………7分
當
時,
的最大值為
…………………………………9分
由,得
值為集合為
………………………10分
(3)由得
所以
時,
為所求….12分
17、解:www.ks5 u.com
(1)
數列
的各項均為正數,
即,所以數列
是以2為公比的等比數列……………………3分
是
的等差中項,
數列
的通項公式
…………………………………………………………6分
(2)由(1)及得
,…………………………………………8分
①
②
②-①得,
…10分
要使成立,只需
成立,即
使
成立的正整數n的最小值為5…………………………………12分
18、解:(1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,
“兩球恰好顏色不同”共2×4+4×2=16種可能,
………………4分
解法二:“有放回摸取”可看作獨立重復實驗 每次摸出一球得白球的概率為
“有放回摸兩次,顏色不同”的概率為
………………………4分
(2)設摸得白球的個數為,依題意得
……
…………………………………………………………………………………………10分
……………………………………………………12分
19、證明:(1)平面
平面
平面
,
又平面
側面
側面
……………………4分
(2)為
的中點,
又
側面
側面
從而
側
故
的長就是點
到側面
的距離在等腰
中,
……………………………………8分
說明:亦可利用向量的方法求得
(3)幾何方法:可以證明就是二面角
的
平面角……………………………………10分
從而………………13分
亦可利用等積轉換算出到平面
的高,
從而得出二面角的平面角為
……13分
說明:也可以用向量法:平面的法向量為
平面的法向量為
………………10分
二面角
的平面角為
20、解(1)設雙曲線方程為
由已知得,再由
,得
故雙曲線的方程為
.…………………………………………5分
(2)將代入
得
由直線與雙曲線交與不同的兩點得
即且
. ① 設
,則…………………8分
,由
得
,
而
.…………………………11分
于是,即
解此不等式得
②
由①+②得
故的取值范圍為…………………………………13分
21、解:(1)由題設知,又
,得
……………2分
(2)…………………………………………………3分
由題設知時
…………………………………………………4分
(當
時,取最小值)……………………4分
而時,當且僅當
時
…………………7分
(3)時,方程
變形為
令得
………9分
由,得
或
,
由,得
………………………………11分
又因為
故
在
取得唯一的極小值
又當時,
的值
,當
時,
的值
,函數
和
草圖如右
兩圖像由公共點時,方程有解,,
故的最小值為
,………………………………………………13分
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com