亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (Ⅲ)求函數的圖像中.求出離坐標軸y軸最近的對稱方程. 查看更多

     

    題目列表(包括答案和解析)

    (本題滿分12分)閱讀下列材料,解決數學問題.圓錐曲線具有非常漂亮的光學性質,被人們廣泛地應用于各種設計之中,比如橢圓鏡面用來制作電影放映機的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學性質,從雙曲線的一個焦點發(fā)出的光線,經過雙曲線反射后,反射光線是發(fā)散的,它們好像是從另一個焦點射出的一樣,如圖(1)所示.反比例函數的圖像是以直線為軸,以坐標軸為漸近線的等軸雙曲線,記作C.

    (Ⅰ)求曲線C的離心率及焦點坐標;

    (Ⅱ)如圖(2),從曲線C的焦點F處發(fā)出的光線經雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.

    (1)           (2) 

     

    查看答案和解析>>

    (本題滿分12分)閱讀下列材料,解決數學問題.

    圓錐曲線具有非常漂亮的光學性質,被人們廣泛地應用于各種設計之中,比如橢圓鏡面用來制作電影放映機的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學性質,從雙曲線的一個焦點發(fā)出的光線,經過雙曲線反射后,反射光線是發(fā)散的,它們好像是從另一個焦點射出的一樣,如右上圖所示.

    反比例函數的圖像是以直線為軸,以坐標軸為漸近線的等軸雙曲線,記作C.

    (Ⅰ)求曲線C的離心率及焦點坐標;

    (Ⅱ)如右下圖,從曲線C的焦點F處發(fā)出的光線經雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.

    查看答案和解析>>

    (本題滿分12分)閱讀下列材料,解決數學問題.圓錐曲線具有非常漂亮的光學性質,被人們廣泛地應用于各種設計之中,比如橢圓鏡面用來制作電影放映機的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學性質,從雙曲線的一個焦點發(fā)出的光線,經過雙曲線反射后,反射光線是發(fā)散的,它們好像是從另一個焦點射出的一樣,如圖(1)所示.反比例函數的圖像是以直線為軸,以坐標軸為漸近線的等軸雙曲線,記作C.
    (Ⅰ)求曲線C的離心率及焦點坐標;
    (Ⅱ)如圖(2),從曲線C的焦點F處發(fā)出的光線經雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.
    (1)          (2) 

    查看答案和解析>>

    (本題滿分12分)閱讀下列材料,解決數學問題.圓錐曲線具有非常漂亮的光學性質,被人們廣泛地應用于各種設計之中,比如橢圓鏡面用來制作電影放映機的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學性質,從雙曲線的一個焦點發(fā)出的光線,經過雙曲線反射后,反射光線是發(fā)散的,它們好像是從另一個焦點射出的一樣,如圖(1)所示.反比例函數的圖像是以直線為軸,以坐標軸為漸近線的等軸雙曲線,記作C.
    (Ⅰ)求曲線C的離心率及焦點坐標;
    (Ⅱ)如圖(2),從曲線C的焦點F處發(fā)出的光線經雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.
    (1)          (2) 

    查看答案和解析>>

    一、1、D    2、A   3、B    4、D    5、B    6、C   7、A    8、D   9、A   10、C

    二、11、二     12、2cm     13、1     14、49720,    15、5www.ks5 u.com

    三、16、解:

    (1)……3分

    ,得……………………………5分

    (2)由(1)得………7分

    時,的最大值為…………………………………9分

    ,得值為集合為………………………10分

    (3)由所以時,為所求….12分

     

     

    17、解:www.ks5 u.com

    (1)

       數列的各項均為正數,

       即,所以數列是以2為公比的等比數列……………………3分

    的等差中項,

    數列的通項公式…………………………………………………………6分

    (2)由(1)及,…………………………………………8分

        

                            ①

          ②

    ②-①得,

    …10分

    要使成立,只需成立,即

    使成立的正整數n的最小值為5…………………………………12分

    18、解:(1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,

    “兩球恰好顏色不同”共2×4+4×2=16種可能,………………4分

    解法二:“有放回摸取”可看作獨立重復實驗   每次摸出一球得白球的概率為

     “有放回摸兩次,顏色不同”的概率為………………………4分

    (2)設摸得白球的個數為,依題意得

    ……

    …………………………………………………………………………………………10分

         ……………………………………………………12分

    19、證明:(1)平面 平面平面,

    平面 側面側面……………………4分

    (2)的中點, 

    側面側面 從而  故的長就是點到側面的距離在等腰中,……………………………………8分

    說明:亦可利用向量的方法求得

    (3)幾何方法:可以證明就是二面角

    平面角……………………………………10分

    從而………………13分

    亦可利用等積轉換算出到平面的高,

    從而得出二面角的平面角為……13分

    說明:也可以用向量法:平面的法向量為

    平面的法向量為………………10分

    二面角的平面角為

    20、解(1)設雙曲線方程為

    由已知得,再由,得

    故雙曲線的方程為.…………………………………………5分

    (2)將代入

     由直線與雙曲線交與不同的兩點得

     即.   ①   設,則…………………8分

    ,由

    .…………………………11分

    于是,即解此不等式得    ②

    由①+②得

    故的取值范圍為…………………………………13分

    21、解:(1)由題設知,又,得……………2分

           (2)…………………………………………………3分

            由題設知

      …………………………………………………4分

    (當時,取最小值)……………………4分

    時,當且僅當   …………………7分

    (3)時,方程變形為

     令………9分

    ,得

    ,得………………………………11分

    又因為

    取得唯一的極小值

    又當時,的值,當時,

    的值,函數草圖如右

    兩圖像由公共點時,方程有解,,

    的最小值為,………………………………………………13分

     

     

     

     

     

     


    同步練習冊答案