題目列表(包括答案和解析)
()(本小題滿分12分)
如圖,四棱錐S-ABCD 的底面是正方形,每條側棱的長都是地面邊長的倍,P為側棱SD上的點。
(Ⅰ)求證:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小
(Ⅲ)在(Ⅱ)的條件下,側棱SC上是否存在一點E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。
A1P |
A1B1 |
(08年北師大附中)如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側棱SD⊥底面ABCD,E、F分別為AB、SC的中點.
(I)證明:EF∥平面SAD;
(II)設SD = 2DC,求二面角A-EF-D的大小.
(09年棗莊一模理)(12分)
如圖,已知三棱柱ABC―A1B1C1的側棱與底面垂直,AA1=AB=AC=1,,M是CC1的中點,N是BC的中點,點P在A1B1上,且滿足
(I)證明:
(II)當取何值時,直線PN與平面ABC所成的角
最大?并求該角最大值的正切值;
(II)若平面PMN與平面ABC所成的二面角為45°,試確定點P的位置。
一、1、D 2、A 3、B 4、D 5、B 6、C 7、A 8、D 9、A 10、C
二、11、二 12、2cm 13、1 14、49720, 15、5www.ks5 u.com
三、16、解:
(1)……3分
,得
……………………………5分
(2)由(1)得………7分
當
時,
的最大值為
…………………………………9分
由,得
值為集合為
………………………10分
(3)由得
所以
時,
為所求….12分
17、解:www.ks5 u.com
(1)
數(shù)列
的各項均為正數(shù),
即,所以數(shù)列
是以2為公比的等比數(shù)列……………………3分
是
的等差中項,
數(shù)列
的通項公式
…………………………………………………………6分
(2)由(1)及得
,…………………………………………8分
①
②
②-①得,
…10分
要使成立,只需
成立,即
使
成立的正整數(shù)n的最小值為5…………………………………12分
18、解:(1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,
“兩球恰好顏色不同”共2×4+4×2=16種可能,
………………4分
解法二:“有放回摸取”可看作獨立重復實驗 每次摸出一球得白球的概率為
“有放回摸兩次,顏色不同”的概率為
………………………4分
(2)設摸得白球的個數(shù)為,依題意得
……
…………………………………………………………………………………………10分
……………………………………………………12分
19、證明:(1)平面
平面
平面
,
又平面
側面
側面
……………………4分
(2)為
的中點,
又
側面
側面
從而
側
故
的長就是點
到側面
的距離在等腰
中,
……………………………………8分
說明:亦可利用向量的方法求得
(3)幾何方法:可以證明就是二面角
的
平面角……………………………………10分
從而………………13分
亦可利用等積轉換算出到平面
的高,
從而得出二面角的平面角為
……13分
說明:也可以用向量法:平面的法向量為
平面的法向量為
………………10分
二面角
的平面角為
20、解(1)設雙曲線方程為
由已知得,再由
,得
故雙曲線的方程為
.…………………………………………5分
(2)將代入
得
由直線與雙曲線交與不同的兩點得
即且
. ① 設
,則…………………8分
,由
得
,
而
.…………………………11分
于是,即
解此不等式得
②
由①+②得
故的取值范圍為…………………………………13分
21、解:(1)由題設知,又
,得
……………2分
(2)…………………………………………………3分
由題設知時
…………………………………………………4分
(當
時,取最小值)……………………4分
而時,當且僅當
時
…………………7分
(3)時,方程
變形為
令得
………9分
由,得
或
,
由,得
………………………………11分
又因為
故
在
取得唯一的極小值
又當時,
的值
,當
時,
的值
,函數(shù)
和
草圖如右
兩圖像由公共點時,方程有解,,
故的最小值為
,………………………………………………13分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com