題目列表(包括答案和解析)
(本題滿(mǎn)分13分)
已知數(shù)列滿(mǎn)足
,
(1)計(jì)算的值;
(2)由(1)的結(jié)果猜想的通項(xiàng)公式,并證明你的結(jié)論。
(本題滿(mǎn)分13分)
如圖在棱長(zhǎng)為2的正方體中,點(diǎn)F為棱CD中點(diǎn),點(diǎn)E在棱BC上
(1)確定點(diǎn)E位置使面
;
(2)當(dāng)面
時(shí),求二面角
的平面角的余弦值;
(本題滿(mǎn)分13分)
一個(gè)口袋里有4個(gè)不同的紅球,6個(gè)不同的白球(球的大小均一樣)
(1)從中任取3個(gè)球,恰好為同色球的不同取法有多少種?
(2)取得一個(gè)紅球記為2分,一個(gè)白球記為1分。從口袋中取出五個(gè)球,使總分不小于7分的不同取法共有多少種?(本題滿(mǎn)分13分)已知定義域?yàn)閇0,1]的函數(shù)同時(shí)滿(mǎn)足: ①對(duì)于任意的
,總有
; ②
=1; ③當(dāng)
時(shí)有
.
(1)求的值;w.w.w.k.s.5.u.c.o.m
(2)求的最大值;
(3)當(dāng)對(duì)于任意,總有
成立,求實(shí)數(shù)
的取值范圍.
(本題滿(mǎn)分13分)
已知橢圓的左、右焦點(diǎn)分別為
、
,過(guò)
的直線交橢圓于
、
兩點(diǎn),過(guò)
的直線交橢圓于
、
兩點(diǎn),且
,垂足為
.
(1)設(shè)點(diǎn)的坐標(biāo)為
,求
的最值;
(2)求四邊形的面積的最小值.
一、1、D 2、A 3、B 4、D 5、B 6、C 7、A 8、D 9、A 10、C
二、11、二 12、2cm 13、1 14、49720, 15、5www.ks5 u.com
三、16、解:
(1)……3分
,得
……………………………5分
(2)由(1)得………7分
當(dāng)
時(shí),
的最大值為
…………………………………9分
由,得
值為集合為
………………………10分
(3)由得
所以
時(shí),
為所求….12分
17、解:www.ks5 u.com
(1)
數(shù)列
的各項(xiàng)均為正數(shù),
即,所以數(shù)列
是以2為公比的等比數(shù)列……………………3分
是
的等差中項(xiàng),
數(shù)列
的通項(xiàng)公式
…………………………………………………………6分
(2)由(1)及得
,…………………………………………8分
①
②
②-①得,
…10分
要使成立,只需
成立,即
使
成立的正整數(shù)n的最小值為5…………………………………12分
18、解:(1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,
“兩球恰好顏色不同”共2×4+4×2=16種可能,
………………4分
解法二:“有放回摸取”可看作獨(dú)立重復(fù)實(shí)驗(yàn) 每次摸出一球得白球的概率為
“有放回摸兩次,顏色不同”的概率為
………………………4分
(2)設(shè)摸得白球的個(gè)數(shù)為,依題意得
……
…………………………………………………………………………………………10分
……………………………………………………12分
19、證明:(1)平面
平面
平面
,
又平面
側(cè)面
側(cè)面
……………………4分
(2)為
的中點(diǎn),
又
側(cè)面
側(cè)面
從而
側(cè)
故
的長(zhǎng)就是點(diǎn)
到側(cè)面
的距離在等腰
中,
……………………………………8分
說(shuō)明:亦可利用向量的方法求得
(3)幾何方法:可以證明就是二面角
的
平面角……………………………………10分
從而………………13分
亦可利用等積轉(zhuǎn)換算出到平面
的高,
從而得出二面角的平面角為
……13分
說(shuō)明:也可以用向量法:平面的法向量為
平面的法向量為
………………10分
二面角
的平面角為
20、解(1)設(shè)雙曲線方程為
由已知得,再由
,得
故雙曲線的方程為
.…………………………………………5分
(2)將代入
得
由直線與雙曲線交與不同的兩點(diǎn)得
即且
. ① 設(shè)
,則…………………8分
,由
得
,
而
.…………………………11分
于是,即
解此不等式得
②
由①+②得
故的取值范圍為…………………………………13分
21、解:(1)由題設(shè)知,又
,得
……………2分
(2)…………………………………………………3分
由題設(shè)知時(shí)
…………………………………………………4分
(當(dāng)
時(shí),取最小值)……………………4分
而時(shí),當(dāng)且僅當(dāng)
時(shí)
…………………7分
(3)時(shí),方程
變形為
令得
………9分
由,得
或
,
由,得
………………………………11分
又因?yàn)?sub>
故
在
取得唯一的極小值
又當(dāng)時(shí),
的值
,當(dāng)
時(shí),
的值
,函數(shù)
和
草圖如右
兩圖像由公共點(diǎn)時(shí),方程有解,,
故的最小值為
,………………………………………………13分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com