題目列表(包括答案和解析)
設(shè)函數(shù)
(1)當(dāng)時(shí),求曲線(xiàn)
處的切線(xiàn)方程;
(2)當(dāng)時(shí),求
的極大值和極小值;
(3)若函數(shù)在區(qū)間
上是增函數(shù),求實(shí)數(shù)
的取值范圍.
【解析】(1)中,先利用,表示出點(diǎn)
的斜率值
這樣可以得到切線(xiàn)方程。(2)中,當(dāng)
,再令
,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說(shuō)明了
在區(qū)間
導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當(dāng)……2分
∴
即為所求切線(xiàn)方程!4分
(2)當(dāng)
令………………6分
∴遞減,在(3,+
)遞增
∴的極大值為
…………8分
(3)
①若上單調(diào)遞增!酀M(mǎn)足要求!10分
②若
∵恒成立,
恒成立,即a>0……………11分
時(shí),不合題意。綜上所述,實(shí)數(shù)
的取值范圍是
橢圓=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)焦點(diǎn)F1的傾斜角為30°直線(xiàn)交橢圓于A(yíng),B兩點(diǎn),弦長(zhǎng)|AB|=8,若三角形ABF2的內(nèi)切圓的面積為π,則橢圓的離心率為
(1)若以l0為一條準(zhǔn)線(xiàn),中心在坐標(biāo)原點(diǎn)的橢圓恰與直線(xiàn)l也相切,切點(diǎn)為T(mén),求橢圓的方程及點(diǎn)T的坐標(biāo);
(2)若直線(xiàn)l與雙曲線(xiàn)6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線(xiàn)段MN的中點(diǎn),又過(guò)點(diǎn)E的直線(xiàn)與該雙曲線(xiàn)的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且(
)p2=m,m∈[
,
],求(1)中切點(diǎn)T到直線(xiàn)PQ的距離的最小值.
(文)如圖,與拋物線(xiàn)x2=-4y相切于點(diǎn)A(-4,-4)的直線(xiàn)l分別交x軸、y軸于點(diǎn)F、E,過(guò)點(diǎn)E作y軸的垂線(xiàn)l0.
(1)若以l0為一條準(zhǔn)線(xiàn),中心在坐標(biāo)原點(diǎn)的橢圓恰好過(guò)點(diǎn)F,求橢圓的方程;
(2)若直線(xiàn)l與雙曲線(xiàn)6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線(xiàn)段MN的中點(diǎn),又過(guò)點(diǎn)E的直線(xiàn)與該雙曲線(xiàn)的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且(
)p2=m,m∈[
,
],求直線(xiàn)PQ的斜率的取值范圍.
(1)若以l0為一條準(zhǔn)線(xiàn),中心在坐標(biāo)原點(diǎn)的橢圓恰與直線(xiàn)l也相切,切點(diǎn)為T(mén),求橢圓的方程及點(diǎn)T的坐標(biāo);
(2)若直線(xiàn)l與雙曲線(xiàn)6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線(xiàn)段MN的中點(diǎn),又過(guò)點(diǎn)E的直線(xiàn)與該雙曲線(xiàn)的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且
p2=m,m∈
,求(1)中切點(diǎn)T到直線(xiàn)PQ的距離的最小值.
(文)如圖,與拋物線(xiàn)x2=-4y相切于點(diǎn)A(-4,-4)的直線(xiàn)l分別交x軸、y軸于點(diǎn)F、E,過(guò)點(diǎn)E作y軸的垂線(xiàn)l0.
(1)若以l0為一條準(zhǔn)線(xiàn),中心在坐標(biāo)原點(diǎn)的橢圓恰好過(guò)點(diǎn)F,求橢圓的方程;
(2)若直線(xiàn)l與雙曲線(xiàn)6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線(xiàn)段MN的中點(diǎn),又過(guò)點(diǎn)E的直線(xiàn)與該雙曲線(xiàn)的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且
=m,m∈
,求直線(xiàn)PQ的斜率的取值范圍.
已知為橢圓
:
的左、右焦點(diǎn),過(guò)橢圓右焦點(diǎn)F2斜率為
(
)的直線(xiàn)
與橢圓
相交于
兩點(diǎn),
的周長(zhǎng)為8,且橢圓C與圓
相切。
(1)求橢圓的方程;
(2)設(shè)為橢圓的右頂點(diǎn),直線(xiàn)
分別交直線(xiàn)
于點(diǎn)
,線(xiàn)段
的中點(diǎn)為
,記直線(xiàn)
的斜率為
,求證
為定值.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com