亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    所以, 當(dāng)時(shí),函數(shù)的極大值為4;極小值為0; 單調(diào)遞增區(qū)間為和. 查看更多

     

    題目列表(包括答案和解析)

    定義在[1,+∞)上的函數(shù)f(x)滿足:①f(2x)=cf(x)(c為正常數(shù));
    ②當(dāng)2≤x≤4時(shí),f(x)=1-|x-3|.試解答下列問(wèn)題:
    (1)設(shè)c>2,方程f(x)=2的根由小到大依次記為a1,a2,a3,…,an,…,試證明:數(shù)列a2n-1+a2n為等比數(shù)列;
    (2)①是否存在常數(shù)c,使函數(shù)的所有極大值點(diǎn)均落在同一條直線上?若存在,試求出c的所有取值并寫(xiě)出直線方程;若不存在,試說(shuō)明理由;②是否存在常數(shù)c,使函數(shù)的所有極大值點(diǎn)均落在同一條以原點(diǎn)為頂點(diǎn)的拋物線上?若存在,試求出c的所有取值并寫(xiě)出拋物線方程;若不存在,試說(shuō)明理由.

    查看答案和解析>>

    定義在[1,+∞)上的函數(shù)f(x)滿足:①f(2x)=cf(x)(c為正常數(shù));
    ②當(dāng)2≤x≤4時(shí),f(x)=1-|x-3|.試解答下列問(wèn)題:
    (1)設(shè)c>2,方程f(x)=2的根由小到大依次記為a1,a2,a3,…,an,…,試證明:數(shù)列a2n-1+a2n為等比數(shù)列;
    (2)①是否存在常數(shù)c,使函數(shù)的所有極大值點(diǎn)均落在同一條直線上?若存在,試求出c的所有取值并寫(xiě)出直線方程;若不存在,試說(shuō)明理由;②是否存在常數(shù)c,使函數(shù)的所有極大值點(diǎn)均落在同一條以原點(diǎn)為頂點(diǎn)的拋物線上?若存在,試求出c的所有取值并寫(xiě)出拋物線方程;若不存在,試說(shuō)明理由.

    查看答案和解析>>

    已知,函數(shù)

    (1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;

    (2)求函數(shù)在[-1,1]的極值;

    (3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

    【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

    對(duì)a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

    解:(Ⅰ)∵  ∴

    ∴  當(dāng)時(shí),  又    

    ∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

    (Ⅱ)令   有 

    ①         當(dāng)時(shí)

    (-1,0)

    0

    (0,

    ,1)

    +

    0

    0

    +

    極大值

    極小值

    的極大值是,極小值是

    ②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無(wú)極小值。 

    綜上所述   時(shí),極大值為,無(wú)極小值

    時(shí)  極大值是,極小值是        ----------8分

    (Ⅲ)設(shè),

    對(duì)求導(dǎo),得

        

    在區(qū)間上為增函數(shù),則

    依題意,只需,即 

    解得  (舍去)

    則正實(shí)數(shù)的取值范圍是(,

     

    查看答案和解析>>

    設(shè)函數(shù)

    (1)當(dāng)時(shí),求曲線處的切線方程;

    (2)當(dāng)時(shí),求的極大值和極小值;

    (3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

    【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說(shuō)明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

    解:(1)當(dāng)……2分

       

    為所求切線方程!4分

    (2)當(dāng)

    ………………6分

    遞減,在(3,+)遞增

    的極大值為…………8分

    (3)

    ①若上單調(diào)遞增!酀M足要求。…10分

    ②若

    恒成立,

    恒成立,即a>0……………11分

    時(shí),不合題意。綜上所述,實(shí)數(shù)的取值范圍是

     

    查看答案和解析>>


    同步練習(xí)冊(cè)答案