亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    因?yàn)樵趨^(qū)間上單調(diào)遞增.在區(qū)間上單調(diào)遞減. 查看更多

     

    題目列表(包括答案和解析)

    設(shè)函數(shù)

    (I)求的單調(diào)區(qū)間;

    (II)當(dāng)0<a<2時(shí),求函數(shù)在區(qū)間上的最小值.

    【解析】第一問定義域?yàn)檎鏀?shù)大于零,得到.                            

    ,則,所以,得到結(jié)論。

    第二問中, ().

    .                          

    因?yàn)?<a<2,所以.令 可得

    對(duì)參數(shù)討論的得到最值。

    所以函數(shù)上為減函數(shù),在上為增函數(shù).

    (I)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">.           ………………………1分

    .                            

    ,則,所以.  ……………………3分          

    因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.                            

    ,則,所以

    因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.          ………………………5分

    所以函數(shù)的單調(diào)遞增區(qū)間為

    單調(diào)遞減區(qū)間為.                         ………………………7分

    (II) ().

    .                          

    因?yàn)?<a<2,所以,.令 可得.…………9分

    所以函數(shù)上為減函數(shù),在上為增函數(shù).

    ①當(dāng),即時(shí),            

    在區(qū)間上,上為減函數(shù),在上為增函數(shù).

    所以.         ………………………10分  

    ②當(dāng),即時(shí),在區(qū)間上為減函數(shù).

    所以.               

    綜上所述,當(dāng)時(shí),;

    當(dāng)時(shí),

     

    查看答案和解析>>

    設(shè)函數(shù)

    (Ⅰ) 當(dāng)時(shí),求的單調(diào)區(qū)間;

    (Ⅱ) 若上的最大值為,求的值.

    【解析】第一問中利用函數(shù)的定義域?yàn)椋?,2),.

    當(dāng)a=1時(shí),所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

    第二問中,利用當(dāng)時(shí), >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

    解:函數(shù)的定義域?yàn)椋?,2),.

    (1)當(dāng)時(shí),所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

    (2)當(dāng)時(shí), >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

     

    查看答案和解析>>

    如圖,,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

    (1)寫出、之間的等量關(guān)系,以及之間的等量關(guān)系;

    (2)求證:);

    (3)設(shè),對(duì)所有恒成立,求實(shí)數(shù)的取值范圍.

    【解析】第一問利用有,得到

    第二問證明:①當(dāng)時(shí),可求得,命題成立;②假設(shè)當(dāng)時(shí),命題成立,即有則當(dāng)時(shí),由歸納假設(shè)及

    第三問 

    .………………………2分

    因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

    解:(1)依題意,有,,………………4分

    (2)證明:①當(dāng)時(shí),可求得,命題成立; ……………2分

    ②假設(shè)當(dāng)時(shí),命題成立,即有,……………………1分

    則當(dāng)時(shí),由歸納假設(shè)及,

    解得不合題意,舍去)

    即當(dāng)時(shí),命題成立.  …………………………………………4分

    綜上所述,對(duì)所有,.    ……………………………1分

    (3) 

    .………………………2分

    因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

    .……………2分

    由題意,有. 所以,

     

    查看答案和解析>>

    已知函數(shù)處取得極值2.

    ⑴ 求函數(shù)的解析式;

    ⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

    【解析】第一問中利用導(dǎo)數(shù)

    又f(x)在x=1處取得極值2,所以,

    所以

    第二問中,

    因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得

    解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分

    ⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得,                …………9分

    當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有 

                                                    …………12分

    .綜上所述,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞減;則實(shí)數(shù)m的取值范圍是

     

    查看答案和解析>>

    已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

    (Ⅰ)求實(shí)數(shù)的值; 

    (Ⅱ)求在區(qū)間上的最大值;

    (Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

    【解析】第一問當(dāng)時(shí),,則。

    依題意得:,即    解得

    第二問當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

    第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

    不妨設(shè),則,顯然

    是以O(shè)為直角頂點(diǎn)的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

    若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

    (Ⅰ)當(dāng)時(shí),,則。

    依題意得:,即    解得

    (Ⅱ)由(Ⅰ)知,

    ①當(dāng)時(shí),,令

    當(dāng)變化時(shí),的變化情況如下表:

    0

    0

    +

    0

    單調(diào)遞減

    極小值

    單調(diào)遞增

    極大值

    單調(diào)遞減

    ,,!上的最大值為2.

    ②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

    當(dāng)時(shí), 上單調(diào)遞增!最大值為。

    綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

    當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

    (Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

    不妨設(shè),則,顯然

    是以O(shè)為直角頂點(diǎn)的直角三角形,∴

        (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

    若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

    ,則代入(*)式得:

    ,而此方程無解,因此。此時(shí),

    代入(*)式得:    即   (**)

     ,則

    上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

    ∴對(duì)于,方程(**)總有解,即方程(*)總有解。

    因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

     

    查看答案和解析>>


    同步練習(xí)冊(cè)答案