亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    所以.即點的縱坐標的取值范圍是. ----14分 查看更多

     

    題目列表(包括答案和解析)

    設(shè)不等式組
    x≥a
    y≥1
    2x+3y-35≤0
    表示的平面區(qū)域是W,若W中的整點(即橫、縱坐標均為整數(shù)的點)共有91個,則實數(shù)a的取值范圍是( 。
    A、(-2,-1]
    B、[-1,0)
    C、(0,1]
    D、[1,2)

    查看答案和解析>>

    已知曲線C:(m∈R)

    (1)   若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;

    (2)     設(shè)m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。

    【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當解得,所以m的取值范圍是

    (2)當m=4時,曲線C的方程為,點A,B的坐標分別為,

    ,得

    因為直線與曲線C交于不同的兩點,所以

    設(shè)點M,N的坐標分別為,則

    直線BM的方程為,點G的坐標為

    因為直線AN和直線AG的斜率分別為

    所以

    ,故A,G,N三點共線。

     

    查看答案和解析>>

    已知函數(shù)

    (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

    (Ⅱ)設(shè),若對任意,,不等式 恒成立,求實數(shù)的取值范圍.

    【解析】第一問利用的定義域是     

    由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

    故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

    第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

    解: (I)的定義域是     ......1分

                  ............. 2分

    由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

    故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

    (II)若對任意不等式恒成立,

    問題等價于,                   .........5分

    由(I)可知,在上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,

    故也是最小值點,所以;            ............6分

    當b<1時,;

    時,

    當b>2時,;             ............8分

    問題等價于 ........11分

    解得b<1 或 或    即,所以實數(shù)b的取值范圍是 

     

    查看答案和解析>>

    (08年西城區(qū)抽樣測試理)設(shè)不等式組表示的平面區(qū)域是,若中的整點(即橫、縱坐標均為整數(shù)的點)共有個,則實數(shù)的取值范圍是(   )

    A.            B.             C.               D.

    查看答案和解析>>

    已知,函數(shù)

    (1)當時,求函數(shù)在點(1,)的切線方程;

    (2)求函數(shù)在[-1,1]的極值;

    (3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

    【解析】本試題中導數(shù)在研究函數(shù)中的運用。(1)中,那么當時,  又    所以函數(shù)在點(1,)的切線方程為;(2)中令   有 

    對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

    解:(Ⅰ)∵  ∴

    ∴  當時,  又    

    ∴  函數(shù)在點(1,)的切線方程為 --------4分

    (Ⅱ)令   有 

    ①         當

    (-1,0)

    0

    (0,

    ,1)

    +

    0

    0

    +

    極大值

    極小值

    的極大值是,極小值是

    ②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

    綜上所述   時,極大值為,無極小值

    時  極大值是,極小值是        ----------8分

    (Ⅲ)設(shè),

    求導,得

    ,    

    在區(qū)間上為增函數(shù),則

    依題意,只需,即 

    解得  (舍去)

    則正實數(shù)的取值范圍是(,

     

    查看答案和解析>>


    同步練習冊答案