亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (Ⅱ)求證:, 查看更多

     

    題目列表(包括答案和解析)

    (Ⅰ)求證:;
    (Ⅱ)化簡:

    查看答案和解析>>

    (Ⅰ)求證:
    (Ⅱ)利用第(Ⅰ)問的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
    (Ⅲ)其實我們常借用構(gòu)造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n2-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

    查看答案和解析>>

    (Ⅰ)求證:
    sinx
    1-cosx
    =
    1+cosx
    sinx

    (Ⅱ)化簡:
    tan(3π-α)
    sin(π-α)sin(
    3
    2
    π-α)
    +
    sin(2π-α)cos(α-
    2
    )
    sin(
    2
    +α)cos(2π+α)

    查看答案和解析>>

    (Ⅰ)求證:
    C
    m
    n
    =
    n
    m
    C
    m-1
    n-1
    ;
    (Ⅱ)利用第(Ⅰ)問的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
    (Ⅲ)其實我們常借用構(gòu)造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
    (1+x)[1-(1+x)n]
    1-(1+x)
    =
    (1+x)n+1-(1+x)
    x
    ;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

    查看答案和解析>>

    (Ⅰ)求證:
    sinx
    1-cosx
    =
    1+cosx
    sinx
    ;
    (Ⅱ)化簡:
    tan(3π-α)
    sin(π-α)sin(
    3
    2
    π-α)
    +
    sin(2π-α)cos(α-
    2
    )
    sin(
    2
    +α)cos(2π+α)

    查看答案和解析>>

    一、選擇題(本大題共8小題,每小題5,40

    ACDDB CDC

     

    二、填空題(本大題共6小題,每小題5分.有兩空的小題,第一空3分,第二空2分,共30分)

    (9)62        (10)2        (11)         (12)2,

    (13)    (14),③④

    三、解答題(本大題共6小題,共80分)

    (15)(本小題共13分)

    解:(Ⅰ)∵),

    ).                ………………………………………1分

    ,,成等差數(shù)列,

    .                                  ………………………………………3分

    .                                     ………………………………………5分

    .                                             ………………………………………6分

    (Ⅱ)由(Ⅰ)得

    ).

    ∴數(shù)列為首項是,公差為1的等差數(shù)列.         ………………………………………8分

    .

    .                                         ………………………………………10分

    時,.      ………………………………………12分

    時,上式也成立.                             ………………………………………13分

    ).

     

    (16)(本小題共13分)

    解:(Ⅰ)該間教室兩次檢測中,空氣質(zhì)量均為A級的概率為.………………………………2分

    該間教室兩次檢測中,空氣質(zhì)量一次為A級,另一次為B級的概率為.

                                                              …………………………………4分

    設(shè)“該間教室的空氣質(zhì)量合格”為事件E.則                    …………………………………5分

    .                              …………………………………6分

    答:估計該間教室的空氣質(zhì)量合格的概率為.

    (Ⅱ)由題意可知,的取值為0,1,2,3,4.                …………………………………7分

    .

    隨機變量的分布列為:

    0

    1

    2

    3

    4

                                                            …………………………………12分

    解法一:

    .    …………………………………13分

    解法二:,

    .                                       …………………………………13分

     

    (17)(本小題共14分)

    (Ⅰ)證明:設(shè)的中點為.

    在斜三棱柱中,點在底面上的射影恰好是的中點,

         平面ABC.         ……………………1分

    平面,

    .               ……………………2分

    ,

    .

    平面.       ……………………4分

    平面,

        平面平面.                          ………………………………………5分

    解法一:(Ⅱ)連接平面,

    是直線在平面上的射影.          ………………………………………5分

    ,

    四邊形是菱形.

    .                                   ………………………………………7分

    .                                   ………………………………………9分

    (Ⅲ)過點于點,連接.

    ,

    平面.

    .

    是二面角的平面角.               ………………………………………11分

    設(shè),則,

    .

    .

    .

    .

    平面,平面,

    .

    .

    中,可求.

    ,∴.

    .

    .                   ………………………………………13分

    .

    ∴二面角的大小為.             ………………………………………14分

    解法二:(Ⅱ)因為點在底面上的射影是的中點,設(shè)的中點為,則平面ABC.以為原點,過平行于的直線為軸,所在直線為軸,所在直線為軸,建立如圖所示的空間直角坐標系.

    設(shè),由題意可知,.

    設(shè),由,得

    ………………………………………7分

    .

      又.

    .

    .                                              ………………………………………9分

    (Ⅲ)設(shè)平面的法向量為.

    .

    設(shè)平面的法向量為.則

    .                                   ………………………………………12分

    .                        ………………………………………13分

    二面角的大小為.           ………………………………………14分

    (18)(本小題共13分)

    解:(Ⅰ)函數(shù)的定義域為.                 ………………………………………1分

    .             ………………………………………3分

    ,解得.

    ,解得

    的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,

    ………………………………………6分

    (Ⅱ)由題意可知,,且上的最小值小于等于時,存在實數(shù),使得不等式成立.                             ………………………………………7分

    時,

    x

    a+1

    -

    0

    +

    極小值

    上的最小值為

    ,得.                           ………………………………………10分

    時,上單調(diào)遞減,則上的最小值為

    (舍).                            ………………………………………12分

    綜上所述,.                               ………………………………………13分

    (19)(本小題共13分)

    解:(Ⅰ)由拋物線C:得拋物線的焦點坐標為,設(shè)直線的方程為:.                                       ………………………………………1分

    .

    所以.因為, …………………………………3分

    所以.

    所以.即.

    所以直線的方程為:.           ………………………………………5分

    (Ⅱ)設(shè),則.

    .

    因為,所以,. ……………………………………7分

       (?)設(shè),則.

      由題意知:,.

    .

      顯然      ………………………………………9分

    (?)由題意知:為等腰直角三角形,,即,即.

    . .

    ..                      ………………………………………11分

      .

    的取值范圍是.                           ………………………………………13分

     

    (20)(本小題共14分)

    解:(Ⅰ)取,得,即.

    因為,所以.                         ………………………………………1分

    ,得.因為,所以.

    ,得

    同步練習冊答案