亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    已知函數(shù)=.(a為正常數(shù)). 查看更多

     

    題目列表(包括答案和解析)

    已知函數(shù)函數(shù)(其中a為常數(shù)),給出下列結(jié)論:
    ,函數(shù)至少有一個(gè)零點(diǎn);
    ②當(dāng)a=0時(shí),函數(shù)有兩個(gè)不同零點(diǎn);
    ,函數(shù)有三個(gè)不同零點(diǎn);
    ④函數(shù)有四個(gè)不同零點(diǎn)的充要條件是a<0.
    其中所有正確結(jié)論的序號(hào)是             

    查看答案和解析>>

    已知函數(shù)函數(shù)(其中a為常數(shù)),給出下列結(jié)論:
    ,函數(shù)至少有一個(gè)零點(diǎn);
    ②當(dāng)a=0時(shí),函數(shù)有兩個(gè)不同零點(diǎn);
    ,函數(shù)有三個(gè)不同零點(diǎn);
    ④函數(shù)有四個(gè)不同零點(diǎn)的充要條件是a<0.
    其中所有正確結(jié)論的序號(hào)是             

    查看答案和解析>>

    已知函數(shù)f(x)=x-xlnx , ,其中表示函數(shù)f(x)在

    x=a處的導(dǎo)數(shù),a為正常數(shù).

    (1)求g(x)的單調(diào)區(qū)間;

    (2)對(duì)任意的正實(shí)數(shù),且,證明:

     

    (3)對(duì)任意的

     

     

    查看答案和解析>>

    已知函數(shù)f(x)=x-xlnx ,,其中表示函數(shù)f(x)在
    x=a處的導(dǎo)數(shù),a為正常數(shù).
    (1)求g(x)的單調(diào)區(qū)間;
    (2)對(duì)任意的正實(shí)數(shù),且,證明:
     
    (3)對(duì)任意的

    查看答案和解析>>

     已知向量=(sin2x,cos2x),=(cos,sin),函數(shù)fx)=+2a(其中a為實(shí)常數(shù))

    (Ⅰ)求函數(shù)fx)的最小正周期;(Ⅱ)求函數(shù)fx)的單調(diào)遞減區(qū)間

    查看答案和解析>>

    一,選擇題:           

     D C B CC,     CA BC B

    二、填空題:

    (11),     -3,         (12), 27      (13),

    (14), .       (15),   -26,14,65

    三、解答題:

      16,   由已知得;所以解集:;

    17, (1)由題意,=1又a>0,所以a=1.

          (2)g(x)=,當(dāng)時(shí),,無(wú)遞增區(qū)間;當(dāng)x<1時(shí),,它的遞增區(qū)間是

        綜上知:的單調(diào)遞增區(qū)間是

    18, (1)當(dāng)0<t≤10時(shí),

    是增函數(shù),且f(10)=240

    當(dāng)20<t≤40時(shí),是減函數(shù),且f(20)=240  所以,講課開(kāi)始10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘。(3)當(dāng)0<t≤10時(shí),令,則t=4  當(dāng)20<t≤40時(shí),令,則t≈28.57 

    則學(xué)生注意力在180以上所持續(xù)的時(shí)間28.57-4=24.57>24

    從而教師可以第4分鐘至第28.57分鐘這個(gè)時(shí)間段內(nèi)將題講完。

    19, (I)……1分

           根據(jù)題意,                                                 …………4分

           解得.                                                            …………7分

       (II)因?yàn)?sub>……7分

       (i)時(shí),函數(shù)無(wú)最大值,

               不合題意,舍去.                                                                  …………11分

       (ii)時(shí),根據(jù)題意得

              

           解之得                                                                      …………13分

           為正整數(shù),=3或4.                                                       …………14分

     

    20. (1)當(dāng)x∈[-1,0)時(shí), f(x)= f(-x)=loga[2-(-x)]=loga(2+x).

    當(dāng)x∈[2k-1,2k),(k∈Z)時(shí),x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].

    當(dāng)x∈[2k,2k+1](k∈Z)時(shí),x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].

    故當(dāng)x∈[2k-1,2k+1](k∈Z)時(shí), f(x)的表達(dá)式為

          <td id="rjvax"><strong id="rjvax"></strong></td>

              1. f(x)=

                loga[2-(x-2k)],x∈[2k,2k+1].

                (2)∵f(x)是以2為周期的周期函數(shù),且為偶函數(shù),∴f(x)的最大值就是當(dāng)x∈[0,1]時(shí)f(x)的最大值,∵a>1,∴f(x)=loga(2-x)在[0,1]上是減函數(shù),

                ∴[f(x)]max= f(0)= =,∴a=4.

                當(dāng)x∈[-1,1]時(shí),由f(x)>

                    得

                f(x)是以2為周期的周期函數(shù),

                f(x)>的解集為{x|2k+-2<x<2k+2-,k∈Z

                21.(1)由8x f(x)4(x2+1),∴f(1)=8,f(-1)=0,∴b=4

                又8x f(x)4(x2+1) 對(duì)恒成立,∴a=c=2   f(x)=2(x+1)2

                (2)∵g(x)==,D={x?x-1  }

                X1=,x2=,x3=-,x4=-1,∴M={,,-,-1}