亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    通過研究學生的學習行為.專家發(fā)現(xiàn).學生的注意力隨著老師講課時間的變化而變化.講課開始時.學生的興趣激增,中間有一段時間.學生的興趣保持較理想的狀態(tài).隨 查看更多

     

    題目列表(包括答案和解析)

    通過研究學生的學習行為,專家發(fā)現(xiàn),學生的注意力著老師講課時間的變化而變化,講課開始時,學生的興趣激增;中間有一段時間,學生的興趣保持較理想的狀態(tài),隨后學生的注意力開始分散,設(shè)f(t)表示學生注意力隨時間t(分鐘)的變化規(guī)律(f(t)越大,表明學生注意力越集中),經(jīng)過實驗分析得知:f(t)=
    -t2+24t+100,0<t≤10
    240,10<t≤20
    -7t+380,20<t≤40

    (1)講課開始后多少分鐘,學生的注意力最集中?能持續(xù)多少分鐘?
    (2)講課開始后5分鐘與講課開始后25分鐘比較,何時學生的注意力更集中?
    (3)一道數(shù)學難題,需要講解24分鐘,并且要求學生的注意力至少達到180,那么經(jīng)過適當安排,教師能否在學生達到所需的狀態(tài)下講授完這道題目?

    查看答案和解析>>

    通過研究學生的學習行為,專家發(fā)現(xiàn),學生的注意力隨著老師講課時間的變化而變化,講課開始時,學生的興趣激增;中間有一段時間,學生的興趣保持較理想的狀態(tài),隨后學生的注意力開始分散,設(shè)表示學生注意力隨時間(分鐘)的變化規(guī)律(越大,表明學生注意力越集中),經(jīng)過實驗分析得知:

       (1)講課開始后多少分鐘,學生的注意力最集中?能持續(xù)多少分鐘?

       (2)講課開始后5分鐘與講課開始后25分鐘比較,何時學生的注意力更集中?

       (3)一道數(shù)學難題,需要講解24分鐘,并且要求學生的注意力至少達到180,那么經(jīng)過適當安排,老師能否在學生達到所需的狀態(tài)下講授完這道題目?

     

    查看答案和解析>>

    通過研究學生的學習行為,專家發(fā)現(xiàn),學生的注意力隨著老師講課時間的變化而變化,講課開始時,學生的興趣激增;中間有一段時間,學生的興趣保持較理想的狀態(tài),隨后學生的注意力開始分散,設(shè)表示學生注意力隨時間(分鐘)的變化規(guī)律(越大,表明學生注意力越集中),經(jīng)過實驗分析得知:

       (1)講課開始后多少分鐘,學生的注意力最集中?能持續(xù)多少分鐘?

       (2)講課開始后5分鐘與講課開始后25分鐘比較,何時學生的注意力更集中?

       (3)一道數(shù)學難題,需要講解24分鐘,并且要求學生的注意力至少達到180,那么經(jīng)過適當安排,老師能否在學生達到所需的狀態(tài)下講授完這道題目?

     

    查看答案和解析>>

    通過研究學生的學習行為,專家發(fā)現(xiàn),學生的注意力隨著老師講課時間的變化而變化,講課開始時,學生的興趣激增;中間有一段時間,學生的興趣保持較理想的狀態(tài),隨后學生的注意力開始分散,設(shè)表示學生注意力隨時間(分鐘)的變化規(guī)律(越大,表明學生注意力越集中),經(jīng)過實驗分析得知:

       (1)講課開始后多少分鐘,學生的注意力最集中?能持續(xù)多少分鐘?

       (2)講課開始后5分鐘與講課開始后25分鐘比較,何時學生的注意力更集中?

       (3)一道數(shù)學難題,需要講解24分鐘,并且要求學生的注意力至少達到180,那么經(jīng)過適當安排,老師能否在學生達到所需的狀態(tài)下講授完這道題目?

    查看答案和解析>>

    通過研究學生的學習行為,專家發(fā)現(xiàn),學生的注意力隨著老師講課時間的變化而變化,講課開始時,學生的興趣激增;中間有一段時間,學生的興趣保持較理想的狀態(tài),隨后學生的注意力開始分散,設(shè)f(t)表示學生注意力隨時間t(分鐘)的變化規(guī)律(f(t)越大,表明學生注意力越集中),經(jīng)過實驗分析得知:

       (1)講課開始后多少分鐘,學生的注意力最集中?能持續(xù)多少分鐘?

       (2)講課開始后5分鐘與講課開始后25分鐘比較,何時學生的注意力更集中?

       (3)一道數(shù)學難題,需要講解24分鐘,并且要求學生的注意力至少達到180,那么經(jīng)過適當安排,老師能否在學生達到所需的狀態(tài)下講授完這道題目?

    查看答案和解析>>

    一,選擇題:           

     D C B CC,     CA BC B

    二、填空題:

    (11),     -3,         (12), 27      (13),

    (14), .       (15),   -26,14,65

    三、解答題:

      16,   由已知得;所以解集:;

    17, (1)由題意,=1又a>0,所以a=1.

          (2)g(x)=,當時,,無遞增區(qū)間;當x<1時,,它的遞增區(qū)間是

        綜上知:的單調(diào)遞增區(qū)間是

    18, (1)當0<t≤10時,

    是增函數(shù),且f(10)=240

    當20<t≤40時,是減函數(shù),且f(20)=240  所以,講課開始10分鐘,學生的注意力最集中,能持續(xù)10分鐘。(3)當0<t≤10時,令,則t=4  當20<t≤40時,令,則t≈28.57 

    則學生注意力在180以上所持續(xù)的時間28.57-4=24.57>24

    從而教師可以第4分鐘至第28.57分鐘這個時間段內(nèi)將題講完。

    19, (I)……1分

           根據(jù)題意,                                                 …………4分

           解得.                                                            …………7分

       (II)因為……7分

       (i)時,函數(shù)無最大值,

               不合題意,舍去.                                                                  …………11分

       (ii)時,根據(jù)題意得

              

           解之得                                                                      …………13分

           為正整數(shù),=3或4.                                                       …………14分

     

    20. (1)當x∈[-1,0)時, f(x)= f(-x)=loga[2-(-x)]=loga(2+x).

    當x∈[2k-1,2k),(k∈Z)時,x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].

    當x∈[2k,2k+1](k∈Z)時,x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].

    故當x∈[2k-1,2k+1](k∈Z)時, f(x)的表達式為

          <td id="rjvax"><strong id="rjvax"></strong></td>

        • f(x)=

          loga[2-(x-2k)],x∈[2k,2k+1].

          (2)∵f(x)是以2為周期的周期函數(shù),且為偶函數(shù),∴f(x)的最大值就是當x∈[0,1]時f(x)的最大值,∵a>1,∴f(x)=loga(2-x)在[0,1]上是減函數(shù),

          ∴[f(x)]max= f(0)= =,∴a=4.

          當x∈[-1,1]時,由f(x)>

              得

          f(x)是以2為周期的周期函數(shù),

          f(x)>的解集為{x|2k+-2<x<2k+2-,k∈Z

          21.(1)由8x f(x)4(x2+1),∴f(1)=8,f(-1)=0,∴b=4

          又8x f(x)4(x2+1) 對恒成立,∴a=c=2   f(x)=2(x+1)2

          (2)∵g(x)==,D={x?x-1  }

          X1=,x2=,x3=-,x4=-1,∴M={,,-,-1}