題目列表(包括答案和解析)
設(shè)
(1)求的表達式,并判斷
的奇偶性;
(2)試證明:函數(shù)的圖象上任意兩點的連線的斜率大于0;
(3)對于,當
時,恒有
求m的取值范圍。
設(shè)
(1)求的表達式,并判斷
的奇偶性;
(2)試證明:函數(shù)的圖象上任意兩點的連線的斜率大于0;
(3)對于,當
時,恒有
求m的取值范圍。
已知函數(shù)滿足
,且
(1)當時,求
的表達式;
(2)設(shè),
,求證:
;w.w.w.k.s.5.u.c.o.m
(3)設(shè),對每一個
,在
與
之間插入
個
,得到新數(shù)列
,設(shè)
是數(shù)列
的前
項和,試問是否存在正整數(shù)
,使
?若存在求出
的值;若不存在,請說明理由.
(滿分13分)已知且
(1)求的表達式;
(2)判斷的奇偶性與單調(diào)性,并給出必要的說明;
(3)當的定義域為
時,如果
恒成立,求實數(shù)
的取值范圍.
一,選擇題:
D C B CC, CA BC B
二、填空題:
(11),
-3,
(12), 27
(13),
(14), . (15), -26,14,65
三、解答題:
16, 由已知得;所以解集:
;
17, (1)由題意,
=1又a>0,所以a=1.
(2)g(x)=
,當
時,
=
,無遞增區(qū)間;當x<1時,
=
,它的遞增區(qū)間是
.
綜上知:的單調(diào)遞增區(qū)間是
.
18, (1)當0<t≤10時,
是增函數(shù),且f(10)=240
當20<t≤40時,是減函數(shù),且f(20)=240 所以,講課開始10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘。(3)當0<t≤10時,令
,則t=4 當20<t≤40時,令
,則t≈28.57
則學(xué)生注意力在180以上所持續(xù)的時間28.57-4=24.57>24
從而教師可以第4分鐘至第28.57分鐘這個時間段內(nèi)將題講完。
19, (I)……1分
根據(jù)題意, …………4分
解得. …………7分
(II)因為……7分
(i)時,函數(shù)
無最大值,
不合題意,舍去. …………11分
(ii)時,根據(jù)題意得
解之得 …………13分
為正整數(shù),
=3或4. …………14分
20. (1)當x∈[-1,0)時, f(x)= f(-x)=loga[2-(-x)]=loga(2+x).
當x∈[2k-1,2k),(k∈Z)時,x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].
當x∈[2k,2k+1](k∈Z)時,x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].
故當x∈[2k-1,2k+1](k∈Z)時, f(x)的表達式為
|