題目列表(包括答案和解析)
.若直線被兩平行線
所截得的線段的長(zhǎng)為
,則
的傾斜
角可以是
① ②
③
④
⑤
其中正確答案的序號(hào)是 .(寫出所有正確答案的序號(hào))
.三、解答題:本大題共6小題,共75分. 解答應(yīng)寫出文字說明、證明過程或演算步驟.
16. (本題滿分12分)
已知函數(shù)為偶函數(shù), 且
(1)求的值;
(2)若為三角形
的一個(gè)內(nèi)角,求滿足
的
的值.
.本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)(選修4—2 矩陣與變換)(本小題滿分7分)
已知矩陣,向量
.
(Ⅰ) 求矩陣的特征值
、
和特征向量
、
;
(Ⅱ)求的值.
(2)(選修4—4 參數(shù)方程與極坐標(biāo))(本小題滿分7分)
在極坐標(biāo)系中,過曲線外的一點(diǎn)
(其中
為銳角)作平行于
的直線
與曲線分別交于
.
(Ⅰ) 寫出曲線和直線
的普通方程(以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸建系);
(Ⅱ)若成等比數(shù)列,求
的值.
(3)(選修4—5 不等式證明選講)(本小題滿分7分)
已知正實(shí)數(shù)、
、
滿足條件
,
(Ⅰ) 求證:;
(Ⅱ)若,求
的最大值.
.15. (考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分.)
A.(不等式選做題)不等式的解集為 .
B.(幾何證明選做題)如圖,直線與圓
相切于點(diǎn)
,割線
經(jīng)過圓心
,弦
⊥
于點(diǎn)
,
,
,則
.
C.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓的圓心到直線
的距離為 .
.(本小題滿分12分)
某單位實(shí)行休年假制度三年以來,50名職工休年假的次數(shù)進(jìn)行的調(diào)查統(tǒng)計(jì)結(jié)果如下表所示:
休假次數(shù) | ![]() | ![]() | ![]() | ![]() |
人數(shù) | ![]() | ![]() | ![]() | ![]() |
1.B 2.B 3.A 4.C 5.C 6.B 7.D 8.B 9.C 10.B
11.A 12.D
【解析】
1.,所以選B.
2.的系數(shù)是
,所以選B.
3.,所以選
.
4.為鈍角或
,所以選C
5.,所以選C.
6.,所以選B.
7.,所以選D.
8.化為或
,所以選B.
9.將左移
個(gè)單位得
,所以選A.
10.直線與橢圓
有公共點(diǎn)
,所以選B.
11.如圖,設(shè),則
,
,
,從而
,因此
與底面所成角的正弦值等于
.所以選A.
12.畫可行域 可知符合條件的點(diǎn)是:
共6個(gè)點(diǎn),故
,所以選D.
二、
13.185..
14.60..
15.,由
,得
.
16..如圖:
如圖,可設(shè),又
,
.
當(dāng)面積最大時(shí),
.點(diǎn)
到直線
的距離為
.
三、
17.(1)由三角函數(shù)的定義知:.
(2)
.
18.(1)設(shè)兩年后出口額恰好達(dá)到危機(jī)前出口額的事件為,則
.
(2)設(shè)兩年后出口額超過危機(jī)前出口額的事件為,則
.
19.(1)設(shè)與
交于點(diǎn)
.
從而,即
,又
,且
平面
為正三角形,
為
的中點(diǎn),
,且
,因此,
平面
.
(2)平面
,∴平面
平面
又
,∴平面
平面
設(shè)為
的中點(diǎn),連接
,則
,
平面
,過點(diǎn)
作
,連接
,則
.
為二面角
的平面角.
在中,
.
又.
20.(1)
(2)
又
綜上:.
21.(1)的解集為(1,3)
∴1和3是的兩根且
|