題目列表(包括答案和解析)
(本小題滿(mǎn)分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn)
.
(1)求函數(shù)的解析式(2)求函數(shù)
在區(qū)間
上的最大值和最小值
(本小題滿(mǎn)分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;
(本小題滿(mǎn)分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(本小題滿(mǎn)分12分)
甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿(mǎn)分12分)已知是橢圓
的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)
在橢圓上,且
,圓O是以
為直徑的圓,直線(xiàn)
與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.
1.B 2.B 3.A 4.C 5.C 6.B 7.D 8.B 9.C 10.B
11.A 12.D
【解析】
1.,所以選B.
2.的系數(shù)是
,所以選B.
3.,所以選
.
4.為鈍角或
,所以選C
5.,所以選C.
6.,所以選B.
7.,所以選D.
8.化為或
,所以選B.
9.將左移
個(gè)單位得
,所以選A.
10.直線(xiàn)與橢圓
有公共點(diǎn)
,所以選B.
11.如圖,設(shè),則
,
,
,從而
,因此
與底面所成角的正弦值等于
.所以選A.
12.畫(huà)可行域 可知符合條件的點(diǎn)是:
共6個(gè)點(diǎn),故
,所以選D.
二、
13.185..
14.60..
15.,由
,得
.
16..如圖:
如圖,可設(shè),又
,
.
當(dāng)面積最大時(shí),
.點(diǎn)
到直線(xiàn)
的距離為
.
三、
17.(1)由三角函數(shù)的定義知:.
(2)
.
18.(1)設(shè)兩年后出口額恰好達(dá)到危機(jī)前出口額的事件為,則
.
(2)設(shè)兩年后出口額超過(guò)危機(jī)前出口額的事件為,則
.
19.(1)設(shè)與
交于點(diǎn)
.
從而,即
,又
,且
平面
為正三角形,
為
的中點(diǎn),
,且
,因此,
平面
.
(2)平面
,∴平面
平面
又
,∴平面
平面
設(shè)為
的中點(diǎn),連接
,則
,
平面
,過(guò)點(diǎn)
作
,連接
,則
.
為二面角
的平面角.
在中,
.
又.
20.(1)
(2)
又
綜上:.
21.(1)的解集為(1,3)
∴1和3是的兩根且
|