亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    高中會考成績分A.B.C.D四個等級.其中等級D為會考不合格.某學(xué)校高三學(xué)生甲參加語文.數(shù)學(xué).英語三科會考.三科會考合格的概率均為.每科得A.B.C.D 四個等級的概率分別為. 查看更多

     

    題目列表(包括答案和解析)

    .高中會考成績分A,B,C,D四個等級,其中等級D為會考不合格,某學(xué)校高三學(xué)生甲參加語文、數(shù)學(xué)、英語三科會考,三科會考合格的概率均為,每科得A,B,C,D 四個等級的概率分別為,

    (Ⅰ)求的值;

    (Ⅱ)若有一科不合格,則不能拿到高中畢業(yè)證,求學(xué)生甲不能拿到高中畢業(yè)證的概率;

    (Ⅲ)若至少有兩科得A,一科得B,就能被評為三好學(xué)生,求學(xué)生甲被評為三好學(xué)生的概率;

    (Ⅳ)設(shè)為學(xué)生甲會考不合格科目數(shù),求的分布列及的數(shù)學(xué)期望。

    查看答案和解析>>

    目前高中畢業(yè)會考中,成績在85~100為“A”,70~84為“B”,60~69為“C”,60分以下為“D”.編制程序,輸入學(xué)生的考試成績(百分制,若有小數(shù)則四舍五入),輸出相應(yīng)的等級.

    查看答案和解析>>

    目前高中畢業(yè)會考中,成績在85~100為“A”,70~84為“B”,60~69為“C”,60分以下為“D”.編制程序,輸入學(xué)生的考試成績(百分制,若有小數(shù)則四舍五入),輸出相應(yīng)的等級.

    查看答案和解析>>

    目前高中畢業(yè)會考中,成績在85~100為“A”,70~84為“B”,60~69為“C”,60分以下為“D”.編制程序,輸入學(xué)生的考試成績(百分制,若有小數(shù)則四舍五入),輸出相應(yīng)的等級.

    查看答案和解析>>

    目前高中畢業(yè)會考中,成績在85—100為“A”,70—84為“B”,60—69為“C”,60分以下為“D”.輸入學(xué)生的考試成績(百分制,若有小數(shù)則四舍五入),輸出相應(yīng)的等級.試畫出程序框圖,并寫出程序.

       

    查看答案和解析>>

    1.解析:,故選A。

    2.解析:抽取回族學(xué)生人數(shù)是,故選B。

    3.解析:由,得,此時,所以,,故選C。

    4.解析:∵,∴,∴,故選C。

    5.解析:設(shè)公差為,由題意得,,解得,故選C。

    6.解析:∵雙曲線的右焦點到一條漸近線的距離等于焦距的,∴,又∵,∴,∴雙曲線的漸近線方程是,故選D.

    7.解析:∵、為正實數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因為函數(shù)是增函數(shù),∴,故恒成立的不等式是①③④。故選C.

    8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。

    9.解析:∵

    ,∴此函數(shù)的最小正周期是,故選C。

    10.解析:如圖,∵正三角形的邊長為,∴,∴,又∵,∴,故選D。

    11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A

    12.解析:如圖,①當時,圓面被分成2塊,涂色方法有20種;②當時,圓面被分成3塊,涂色方法有60種;

    ③當時,圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。

    13.解析:將代入結(jié)果為,∴時,表示直線右側(cè)區(qū)域,反之,若表示直線右側(cè)區(qū)域,則,∴是充分不必要條件。

    學(xué)科網(wǎng)(Zxxk.Com)14.解析:∵,∴時,,又時,滿足上式,因此,。

    學(xué)科網(wǎng)(Zxxk.Com)15.解析:設(shè)正四面體的棱長為,連,取的中點,連,∵的中點,∴,∴或其補角為所成角,∵,,∴,∴,又∵,∴,∴所成角的余弦值為

    學(xué)科網(wǎng)(Zxxk.Com)16.解析:∵,∴,∵點的準線與軸的交點,由向量的加法法則及拋物線的對稱性可知,點為拋物線上關(guān)于軸對稱的兩點且做出圖形如右圖,其中為點到準線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量的夾角為。

    17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分

    ,,………4分

    (Ⅱ)∵,∴,∴,………………………6分

    又∵,∴,∴,………………………8分

    !10分

    18.解析:(Ⅰ)∵,∴;……………………理3文4分

    (Ⅱ)∵三科會考不合格的概率均為,∴學(xué)生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分

    (Ⅲ)∵每科得A,B的概率分別為,∴學(xué)生甲被評為三好學(xué)生的概率為!12分

    19.(12分)解析:(Ⅰ)∵,∴,

     ,,……………3分

    (Ⅱ)∵,∴,

    ,

    ,∴數(shù)列自第2項起是公比為的等比數(shù)列,………………………6分

    ,………………………8分

    (Ⅲ)∵,∴,………………10分

    。………………………12分

    20.解析:(Ⅰ)∵,,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴!4分

    (Ⅱ)∵平面,∴,∴為二面角的平面角,………………………6分

    ,,∴,又∵平面,∴,∴二面角的正切值的大小為。………………………8分

    (Ⅲ)過點,交于點,∵平面,∴在平面內(nèi)的射影,∴與平面所成的角,………………………10分

    學(xué)科網(wǎng)(Zxxk.Com),∴,又∵,∴與平面所成的角相等,∴與平面所成角的正切值為!12分

    解法2:如圖建立空間直角坐標系,(Ⅰ)∵,,∴點的坐標分別是,,∴,,設(shè),∵平面,∴,∴,取,∴,∴!4分

    (Ⅱ)設(shè)二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為!8分

    (Ⅲ)設(shè)與平面所成角的大小為,∵平面的法向量是,∴,∴,∴與平面所成角的正切值為!12分

    21.解析:(Ⅰ)設(shè)拋物線方程為,將代入方程得

    所以拋物線方程為!2分

    由題意知橢圓的焦點為、

    設(shè)橢圓的方程為,

    ∵過點,∴,解得,,

    ∴橢圓的方程為!5分

    (Ⅱ)設(shè)的中點為,的方程為:,

    為直徑的圓交兩點,中點為。

    設(shè),則

      

    ………………………8分

    ………………………10分

    時,,

    此時,直線的方程為!12分

    22.(12分)解析:(Ⅰ)∵是偶函數(shù),∴

    又∵,,………………………2分

    得,

    時,;時,;時,;∴時,函數(shù)取得極大值,時,函數(shù)取得極小值!5分

    (Ⅱ)∵在區(qū)間上為增函數(shù),∴上恒成立,∴

    在區(qū)間上恒成立,………………………7分

    ……………………9分

    又∵=,∵

    ,∴的取值范圍是!12分

     


    同步練習(xí)冊答案