亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    查看更多

     

    題目列表(包括答案和解析)

    (本小題滿分12分)如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a,

        D、E分別為棱AB、BC的中點(diǎn), M為棱AA1­上的點(diǎn),二面角MDEA為30°.

       (1)求MA的長(zhǎng);w.w.w.k.s.5.u.c.o.m      

       (2)求點(diǎn)C到平面MDE的距離。

    查看答案和解析>>

    (本小題滿分12分)某校高2010級(jí)數(shù)學(xué)培優(yōu)學(xué)習(xí)小組有男生3人女生2人,這5人站成一排留影。

    (1)求其中的甲乙兩人必須相鄰的站法有多少種? w.w.w.k.s.5.u.c.o.m      

    (2)求其中的甲乙兩人不相鄰的站法有多少種?

    (3)求甲不站最左端且乙不站最右端的站法有多少種 ?

    查看答案和解析>>

    (本小題滿分12分)

    某廠有一面舊墻長(zhǎng)14米,現(xiàn)在準(zhǔn)備利用這面舊墻建造平面圖形為矩形,面積為126平方米的廠房,工程條件是①建1米新墻費(fèi)用為a元;②修1米舊墻的費(fèi)用為元;③拆去1米舊墻,用所得材料建1米新墻的費(fèi)用為元,經(jīng)過討論有兩種方案: (1)利用舊墻的一段x米(x<14)為矩形廠房一面的邊長(zhǎng);(2)矩形廠房利用舊墻的一面邊長(zhǎng)x≥14.問如何利用舊墻,即x為多少米時(shí),建墻費(fèi)用最省?(1)、(2)兩種方案哪個(gè)更好?

     

    查看答案和解析>>

    (本小題滿分12分)

    已知a,b是正常數(shù), ab, xy(0,+∞).

       (1)求證:,并指出等號(hào)成立的條件;w.w.w.k.s.5.u.c.o.m           

       (2)利用(1)的結(jié)論求函數(shù)的最小值,并指出取最小值時(shí)相應(yīng)的x 的值.

    查看答案和解析>>

    (本小題滿分12分)

    已知a=(1,2), b=(-2,1),xab,y=-kab (kR).

       (1)若t=1,且xy,求k的值;

       (2)若tR ,x?y=5,求證k≥1.

    查看答案和解析>>

    1.解析:,故選A。

    2.解析:∵

    故選B。

    3.解析:由,得,此時(shí),所以,,故選C。

    4.解析:顯然,若共線,則共線;若共線,則,即,得,∴共線,∴共線是共線的充要條件,故選C。

    5.解析:設(shè)公差為,由題意得,;,解得,故選C。

    6.解析:∵雙曲線的右焦點(diǎn)到一條漸近線的距離等于焦距的,∴,又∵,∴,∴,∴雙曲線的離心率是。故選B.

    7.解析:∵、為正實(shí)數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因?yàn)楹瘮?shù)是增函數(shù),∴,故恒成立的不等式是①③④。故選C.

    8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。

    9.解析:∵

    ,此函數(shù)的最小值為,故選C。

    10.解析:如圖,∵正三角形的邊長(zhǎng)為,∴,∴,又∵,∴,故選D。

    11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A

    12.解析:如圖,①當(dāng)時(shí),圓面被分成2塊,涂色方法有20種;②當(dāng)時(shí),圓面被分成3塊,涂色方法有60種;

    ③當(dāng)時(shí),圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。

    13.解析:做出表示的平面區(qū)域如圖,當(dāng)直線經(jīng)過點(diǎn)時(shí),取得最大值5。

    學(xué)科網(wǎng)(Zxxk.Com)14.解析:∵,∴時(shí),,又時(shí),滿足上式,因此,,

    。

    學(xué)科網(wǎng)(Zxxk.Com)15.解析:設(shè)正四面體的棱長(zhǎng)為,連,取的中點(diǎn),連,∵的中點(diǎn),∴,∴或其補(bǔ)角為所成角,∵,,∴,∴,又∵,∴,∴所成角的余弦值為

    學(xué)科網(wǎng)(Zxxk.Com)16.解析:∵,∴,∵點(diǎn)的準(zhǔn)線與軸的交點(diǎn),由向量的加法法則及拋物線的對(duì)稱性可知,點(diǎn)為拋物線上關(guān)于軸對(duì)稱的兩點(diǎn)且做出圖形如右圖,其中為點(diǎn)到準(zhǔn)線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量的夾角為

    17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分

    ,,………4分

    (Ⅱ)∵,∴,∴,………………………6分

    又∵,∴,∴,………………………8分

    。………………………10分

    18.解析:(Ⅰ)∵,∴;……………………理3文4分

    (Ⅱ)∵三科會(huì)考不合格的概率均為,∴學(xué)生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分

    (Ⅲ)∵每科得A,B的概率分別為,∴學(xué)生甲被評(píng)為三好學(xué)生的概率為!12分

    (理)∵,,!9分

    的分布列如下表:

    0

    1

    2

    3

    的數(shù)學(xué)期望!12分

    19.(12分)解析:(Ⅰ)時(shí),

    ,,

        

    得,   ………3分

     

     

    +

    0

    0

    +

    遞增

    極大值

    遞減

    極小值

    遞增

    ,      ………………………6分

    (Ⅱ)在定義域上是增函數(shù),

    對(duì)恒成立,即 

       ………………………9分

    (當(dāng)且僅當(dāng)時(shí),

                   

     ………………………4分

    學(xué)科網(wǎng)(Zxxk.Com)              

    20.解析:(Ⅰ)∵,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴。………………………4分

    (Ⅱ)∵平面,∴,,∴為二面角的平面角,………………………6分

    ,,∴,又∵平面,,∴,∴二面角的正切值的大小為。………………………8分

    (Ⅲ)過點(diǎn),交于點(diǎn),∵平面,∴在平面內(nèi)的射影,∴與平面所成的角,………………………10分

    學(xué)科網(wǎng)(Zxxk.Com),∴,又∵,∴與平面所成的角相等,∴與平面所成角的正切值為!12分

    解法2:如圖建立空間直角坐標(biāo)系,(Ⅰ)∵,,∴點(diǎn)的坐標(biāo)分別是,,∴,,設(shè),∵平面,∴,∴,取,∴,∴!4分

    (Ⅱ)設(shè)二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為!8分

    (Ⅲ)設(shè)與平面所成角的大小為,∵平面的法向量是,,∴,∴,∴與平面所成角的正切值為!12分

    21.(Ⅰ) 解析:如圖,設(shè)右準(zhǔn)線軸的交點(diǎn)為,過點(diǎn)分別向軸及右準(zhǔn)線引垂線,∵,∴,又∵,∴,………………………2分

    ,又∵,∴,又∵,解得,∴,∴雙曲線的方程為!4分

    (Ⅱ)聯(lián)立方程組   消得:

    由直線與雙曲線交于不同的兩點(diǎn)得:

      于是 ,且    ………………①………………………6分

    設(shè)、,則

    ……………………9分

    ,所以,解得      ……………②   

    由①和②得    即

    的取值范圍為!12分

    22.(12分)解析:(Ⅰ)∵,∴,∴,∴數(shù)列是等差數(shù)列,………………………2分

    又∵,∴公差為2,

    ,………………………4分

    (Ⅱ)∵,∴

    ∴數(shù)列是公比為2的等比數(shù)列,

    ,∴,………………………6分

    (Ⅲ)∵,

    ………………………8分

    ………………………10分

    ,∴,又∵,∴………………………12分

     

     


    同步練習(xí)冊(cè)答案