亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (A)第一象限 (B)第二象限 查看更多

     

    題目列表(包括答案和解析)

                       (A)第一象限                (B)第二象限

                       (C)第三象限                (D)第四象限

                                                  

    查看答案和解析>>



    A)第一象限               (B)第二象限
    C)第三象限               (D)第四象限

    查看答案和解析>>

    曲線的中心在(    )

    (A)第一象限    (B)第二象限    (C)第三象限    (D)第四象限

    查看答案和解析>>

    曲線的中心在(    )

    (A)第一象限    (B)第二象限    (C)第三象限    (D)第四象限

     

    查看答案和解析>>

    ,則角的終邊在( )

    (A)   第一象限(B)第二象限(C)第三象限(D)第四象限

     

    查看答案和解析>>

          <td id="rjvax"><strong id="rjvax"></strong></td>

            1. 2009.4

               

              1-10.CDABB   CDBDA

              11.       12. 4        13.        14.       15.  

              16.   17.

              18.解:(Ⅰ)由題意,有,

              .…………………………5分

              ,得

              ∴函數(shù)的單調(diào)增區(qū)間為 .……………… 7分

              (Ⅱ)由,得

              .           ……………………………………………… 10分

              ,∴.      ……………………………………………… 14分

              19.解:(Ⅰ)設(shè)數(shù)列的公比為,由.             …………………………………………………………… 4分

              ∴數(shù)列的通項公式為.      ………………………………… 6分

              (Ⅱ) ∵,    ,      ①

              .      ②         

              ①-②得: …………………12分

                           得,                           …………………14分

              20.解:(I)取中點,連接.

              分別是梯形的中位線

              ,又

              ∴面,又

              .……………………… 7分

              (II)由三視圖知,是等腰直角三角形,

                   連接

                   在面AC1上的射影就是,∴

                  

              ∴當(dāng)的中點時,與平面所成的角

                是.           ………………………………14分

                                                             

              21.解:(Ⅰ)由題意:.

              為點M的軌跡方程.     ………………………………………… 4分

              (Ⅱ)由題易知直線l1l2的斜率都存在,且不為0,不妨設(shè),MN方程為 聯(lián)立得:,設(shè)6ec8aac122bd4f6e

                  ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

                     同理RQ的方程為,求得.  ………………………… 9分

              .  ……………………………… 13分

              當(dāng)且僅當(dāng)時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

              22. 解:(Ⅰ),由題意得

              所以                    ………………………………………………… 4分

              (Ⅱ)證明:令,

              得:,……………………………………………… 7分

              (1)當(dāng)時,,在,即上單調(diào)遞增,此時.

                        …………………………………………………………… 10分

              (2)當(dāng)時,,在,在,在,即上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,或者,此時只要或者即可,得

              .                        …………………………………………14分

              由 (1) 、(2)得 .

              ∴綜上所述,對于,使得成立. ………………15分