題目列表(包括答案和解析)
解:因為有負根,所以在y軸左側有交點,因此
解:因為函數沒有零點,所以方程無根,則函數y=x+|x-c|與y=2沒有交點,由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數y=f(x)-1的零點
(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數是奇函數
數字1,2,3,4恰好排成一排,如果數字i(i=1,2,3,4)恰好出現在第i個位置上則稱有一個巧合,求巧合數的分布列。
|
解答題:解答應寫出文字說明,證明過程或演算步驟.
定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函數f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,曲線C1與y軸交于點A(0,m),過坐標原點O向曲線C1作切線,切點為B(n,t)(n>0),設曲線C1在點A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值;
(Ⅱ)令函數g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C2,若存在實數b使得曲線C2在x0(-4<x0<-1)處有斜率為-8的切線,求實數a的取值范圍;
(Ⅲ)當且x<y時,證明F(x,y)>F(y,x).
設,求下列各式的值:
(Ⅰ) ;
(Ⅱ)
; (Ⅲ)
.
【解析】本試題主要考查了二項式定理的運用。第一問中利用賦值的思想,令x=0,得到
第二問中,利用令x=1,得到
第三問中,利用令x=1/2,得到
解:(1)令x=0,得到;
(2)令x=1,得到
(3)令x=1/2,得到
在中,已知
,面積
,
(1)求的三邊的長;
(2)設是
(含邊界)內的一點,
到三邊
的距離分別是
①寫出所滿足的等量關系;
②利用線性規(guī)劃相關知識求出的取值范圍.
【解析】第一問中利用設中角
所對邊分別為
由得
又由得
即
又由得
即
又
又
得
即的三邊長
第二問中,①得
故
②
令依題意有
作圖,然后結合區(qū)域得到最值。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com