題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為
,求數(shù)列
的前
項和
;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:
,設(shè)
,
若(2)中的滿足對任意不小于2的正整數(shù)
,
恒成立,
試求的最大值。
(本小題滿分14分)已知,點
在
軸上,點
在
軸的正半軸,點
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當(dāng)點在
軸上移動時,求動點
的軌跡
方程;
(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時,不等式
恒成立,求實數(shù)
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知,其中
是自然常數(shù),
(1)討論時,
的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使
的最小值是3,若存在,求出
的值;若不存在,說明理由.
(本小題滿分14分)
設(shè)數(shù)列的前
項和為
,對任意的正整數(shù)
,都有
成立,記
。
(I)求數(shù)列的通項公式;
(II)記,設(shè)數(shù)列
的前
項和為
,求證:對任意正整數(shù)
都有
;
(III)設(shè)數(shù)列的前
項和為
。已知正實數(shù)
滿足:對任意正整數(shù)
恒成立,求
的最小值。
一、選擇題:每小題5分,共60分
BCCAB ACADB BB
二、填空題:每小題4分,共16分
13.,甲,甲:
①
三、解答題:本題滿分共74分,解答應(yīng)有必要的文字說明,解答過程或演算步驟
17.解:(1)甲、乙二人抽到的牌的所有基本事件(放快4用
(2)甲抽到3,乙抽到的牌只能是2,4,
因此乙抽到的牌的數(shù)字大于3的概率是;------------------------(6分)
(3)甲抽到牌比乙大有(3,2),(4,2),(4,3),(,乙獲勝的與甲獲勝是對立事件,所以乙獲勝的概率是
,
此游戲不公平------------------(12分)
18.解:(1)由題意知.
(5分)
,
-----------------(7分)
(2)
-------------------------------------(9分)
---------------(12分)
19.解:(1)低面ABCD是正方形,O為中心,
AC⊥BD
又SA=SC,AC⊥SO,又SO
BD=0,
AC⊥平面SBD-----------------(6分)
(2)連接
又由(1)知,AC⊥BD
且AC⊥平面SBD,
所以,AC⊥SB---------------(8分)
⊥
⊥
,且EM
NE=E
⊥平面EMN-------------(10分)
因此,當(dāng)P點在線段MN上移動時,總有AC⊥EP-----(12分)
20.解:
-------------------------------(2分)
(2)
則
令--------------------------------(4分)
當(dāng)x在區(qū)間[-1,2]上變化時,y’,y的變化情況如下表:
X
-1
1
(1,2)
2
Y’
+
0
-
0
+
Y
3/2
單增
極大值
單減
極小值
單增
3
又
-----------(6分)
(3)證明:
又
---------------------(12分)
21.解:(1)
當(dāng)
當(dāng),適合上式,
-------------------------------(4分)
(2),
①
, ②
兩式相減,得
=
=
=
--------------------------------(8分)
(3)證明,由
又
=
成立---------------------------------------------------(12分)
22.解:(1)由題意可知直線l的方程為,
因為直線與圓相切,所以
=1,既
從而----------------------------------------------------------------------------------------(6分)
(2)設(shè)則
---------------------------------(8分)
j當(dāng)
k當(dāng)
故舍去。
綜上所述,橢圓的方程為------------------------------------(14分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com