題目列表(包括答案和解析)
已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,
為其前n項(xiàng)和,且滿足
,
.?dāng)?shù)列
滿足
,
,
為數(shù)列
的前n項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式
和數(shù)列
的前n項(xiàng)和
;
(2)若對(duì)任意的,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)是否存在正整數(shù),使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請(qǐng)說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,,
[
又時(shí),
滿足
,
,
第二問,①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
第三問,
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,,
[
又時(shí),
滿足
,
,
.
(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
綜合①、②可得的取值范圍是
.
(3),
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
又,且m>1,所以m=2,此時(shí)n=12.
因此,當(dāng)且僅當(dāng)m=2,
n=12時(shí),數(shù)列中的
成等比數(shù)列
1 | 3 |
1 |
3 |
一、選擇題:(本題每小題5分,共50分)
1
2
3
4
5
6
7
8
9
10
D
B
C
D
D
C
B
A
A
C
二、填空題:(本題每小題4分,共16分)
11.
12.
13.
14.
三、解答題(本大題6小題,共84分。解答應(yīng)寫出文字說明,證明過程或演算步驟)
15.(本小題滿分14分)
解得
…………………4分
又
∵+1>
得B={y|y<
或y>
+1}……………………8分
∵A∩B=φ
∴
1
+1
9…………………12分
∴-2
…………………14分
16.(本小題滿分14分)
解:(1),
由得
又
………6分
(2)因
………8分
又,
,則
即…………………10分
…14分
17.(本小題滿分14分)
解:
(…………………3分)
=
(…………………7分)
又,
,
(1)若,即
時(shí),
=
=
,(…………10分)
(2)若,即
時(shí),
所以當(dāng)即
時(shí),
=
(…………………13分)
(…………………14分)
18.(本小題滿分14分)
解:(1)令,
,即
由
∵,∴
,即數(shù)列
是以
為首項(xiàng)、
為公差的等差數(shù)列, ∴
…………8分
(2)化簡得
,即
∵,又∵
時(shí),
…………12分
∴各項(xiàng)中最大項(xiàng)的值為…………14分
19.(本小題滿分14分)
解:(1),由題意
―――①
又―――②
聯(lián)立得
…………5分
(2)依題意得 即
,對(duì)
恒成立,設(shè)
,則
解得
當(dāng) ……10分
則
又,所以
;故只須
…………12分
解得
即的取值范圍是
…………14分
20.(本小題滿分14分)
解:(1)由,
即函數(shù)
的圖象交于不同的兩點(diǎn)A,B; ……4分(2)
已知函數(shù),
的對(duì)稱軸為
,
故在[2,3]上為增函數(shù),
……………6分
……8分
(3)設(shè)方程
……10分
……12分
設(shè)的對(duì)稱軸為
上是減函數(shù),
……14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com