亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    且M.N在底面的射影分別為M1.N1.直線⊥平面BDD1B1. 查看更多

     

    題目列表(包括答案和解析)

    已知l、m、n是直線,α、β是平面,給出命題:

    ①若m∥α,n∥α,則m∥n;

    ②設(shè)α-l-β是直二面角,若m⊥l,則m⊥β;

    ③若m、n在α內(nèi)的射影依次為一個點和一條直線,且m⊥n,則nα或n∥α;

    ④設(shè)m、n是異面直線,若m∥α,則n與α相交.

    其中真命題的序號是___________(把所有真命題的序號都填上)

    查看答案和解析>>

    過橢圓的右焦點F作直線交橢圓于M,N兩點,設(shè)

       (1)求直線的斜率;

       (2)設(shè)M,N在直線上的射影分別為M1,N1,求的值

     

    查看答案和解析>>

    正三棱錐底面邊長為a,側(cè)棱與底面成60°角,則一個側(cè)面在底面的射影面積為(     )。

       A. 3a2     B. 2a2     C. a2     D.

     

    查看答案和解析>>

    如圖,已知斜三棱柱ABC-A1B1C1的底面△ABC為直角三角形,∠C=90°,側(cè)棱與底面成60°角,點B1在底面的射影DBC的中點.

    求證:AC⊥平面BCC1B1.

    查看答案和解析>>

    已知l、m、n是直線,α、β是平面,給出命題:

    ①若m∥α,n∥α,則m∥n;

    ②設(shè)α-l-β是直二面角,若m⊥l,則m⊥β;

    ③若m、n在α內(nèi)的射影依次為一個點和一條直線,m⊥n,則nα或n∥α;

    ④設(shè)m、n是異面直線,若m∥α,則n與α相交.

    其中真命題的序號是___________.(把所有真命題的序號都填上)

    查看答案和解析>>

     

    一.選擇題

    BADCC  ACCCC   AD

    二.填空題

    13.      14. 29     15.開閉區(qū)間均可)   16.  

    三、解答題

    17.解:

    (1)∵, ∴,

    ………3分

    .,  ∴………6分

    (2)由題知,得, ………8分

    得sinB=2cosB, ………10分

    ………12分

    18.解:

    (1)得分為60分,12道題必須全做對。在其余的5道題中,有兩道題答對的概率為,

    有一道題答對的概率為,還有兩道答對的概率為………2分

    所以得分為60分的概率為:P=………4分   

       (2)由可得 ………5分

    ,得2<x<15,則x=5或x=10,則相應得分為55分或50分……7分

    得分為50分表示只做對了10道題,做錯2道題,所以概率為

    +

    += ………9分

    得分為55分表示只做對了11道題,做錯1道題,所以概率為:

    P2== ………11分

    則所求概率為+=。答:該考生得分的概率為 ………12分

    19.證明:

    (1)面A1B1C1∥面ABC,故B1C1∥BC,A1C1∥AC又BC⊥AC ,則B1C1⊥A1C1………2分

    又 面AB1C⊥面ABC,則BC⊥面AB1C,則BC⊥AB1,B1C1⊥AB1  又∵B1C1∩A1C1=C1,

     B1C1∩AB1=B1,故B1C1為異面直線AB1與A1C1的公垂線………4分

    (2)由于BC⊥面AB1C   則面VBC⊥面AB1C,過A作AH⊥B1C于H,則AH⊥面VBC

     又AB1C 為等邊三角形且AC=,則AH=為A到平面VBC的距離………7分

    (3)過H作HG⊥VB于G,連AG則∠AGH為二面角A-VB-C的平面角

    在RtB1CB中 ………10分

    又RtB1HG∽RtB1BC  則,即

    故二面角A-VB-C的大小為………12分

    (本題也可用建立空間直角坐標系然后用空間向量求解,評分標準參照執(zhí)行)

    20.解:

    (1)設(shè){an}的公差d,為{bn}的公比為q,則

    ………6分

    (2){Cn}的前n-1項中共有{an}中的1+2+3+…(n-1)=個項………8分

    且{an}的第項為………10分

    故Cn是首項為,公差為2,項數(shù)為n的等差數(shù)列的前n項和,

    ………12分

    21.解:

    (1)f(x)=x2+ax+b,由 f(3)=9+3a+b=0得b=-3a-9………2分

    (2)令f(x)= x2+ax-3a-9=(x-3)(x+a+3)=0得x=3或x=-a-3

    當a=-6時,f(x)=≥0,則f(x)無單調(diào)遞減區(qū)間………4分

    當a>-6時,令f(x) =(x-3)(x+a+3)≤0,得-a-3≤x≤3,

    則f(x)的單調(diào)遞減區(qū)間為[-a-3,3] ………6分

    當a<-6時,易得f(x)的單調(diào)遞減區(qū)間為[3,-a-3]

    綜上所述當a=-6時, f(x)無單調(diào)遞減區(qū)間;當a>-6時,f(x)的單調(diào)遞減區(qū)間為[-a-3,3],

     當a<-6時, f(x)的單調(diào)遞減區(qū)間為[3,-a-3] ………8分

    (3)由a>0知-a-3<-3,由(2)知f(x)在[-3,3]上是減函數(shù),又-3≤3cos≤3,-3≤3sin≤3,則要恒成立只要|f(-3)-f(3)|<72恒成立………10分

    又|f(-3)-f(3)|=18|a+2|<72,得-6<a<2,又a>0,則0<a<2………12分

    22.解:

    (1)由題意設(shè)橢圓方程為………1分

    ,橢圓方程為………4分

    (2)設(shè)

    ………7分

    ………9分

    =

    ………11分

    由于,

    因此的取值范圍為………14分

     

     


    同步練習冊答案