亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    19. 已知函數(shù)f(x)=ax3+bx在x=1處有極值-2.(1)試確定常數(shù)a.b的值;(2)求函數(shù)的單調(diào)區(qū)間. 查看更多

     

    題目列表(包括答案和解析)

    已知函數(shù)f(x)=ax3bxcx=2處取得極值為c-16.

    (1)求a,b的值;

    (2)若f(x)有極大值28,求f(x)在[-3,3]上的最小值.

    查看答案和解析>>

    已知函數(shù)f(x)=ax3+bx+c在x=2處取得極值為c-16

    (1)求a、b的值;

    (2)若f(x)有極大值28,求f(x)在[-3,3]上的最大值.

    查看答案和解析>>

    一、選擇題:

    題號

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    答案

    C

    C

    B

    D

    C

    C

    D

    B

    A

    A

    B

    C

     

    二、填空題:

    13.2x    14. x=-1    15.k2=2.143  沒有   16.(-∞,-3]

    三、解答題:

    17.(1)z=1+i    |z|=    (2分)

    (2)a=0,b=1             (4分)

    18.綜合法、分析法均可(略)

    19.(1)依題意有:解得a=1,b=-3(3分)

      (2)f(x)=x3-3x   f′(x)=3x2-3

    當f′(x)>0,即x>1或x<-1,∴單調(diào)遞增區(qū)間為(-∞,-1),(1,+∞)

    當f′(x)>0,-1<x<1,∴單調(diào)遞減區(qū)間為(-1,1)                   (5分)

    20.(1)a1=,a2=,a3=,a4=       (2分)

    (2)an=                         (3分)

    (3)Sn=1-                    (5分)

    21.解:依題意,直線斜率顯然存在,設直線斜率為k,則直線的方程為:y+1=kx

    拋物線y=-與直線相交于A、B兩點

    x2+2kx-2=0,∴△=4k2+8>0,

    設A(x1,x2),B(x2,y2) 則x1+x2=-2k

    ∵kOA+KOB=1     ∴

    即x1+x2=-2=-2k∴k=1

    22.(1)a=1,b=3

      (2)∵f(x)=x3+3x2在[m,m+1]上單調(diào)遞增

         ∴f′(x)=3x2+6x≥0,在[m,m+1]上

         ∵3x2+6x≥0, ∴x≥0或x≤-2

         ∴m+1≤-2或m≥0即m≤-3或m≥0

         ∴m的取值范圍是{m|m≤-3或m≥0}

     


    同步練習冊答案