亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (1)若兩點(diǎn)等分單位圓時(shí).有相應(yīng)關(guān)系為:(2)四點(diǎn)等分單位圓時(shí).有相應(yīng)關(guān)系為: 查看更多

     

    題目列表(包括答案和解析)

    運(yùn)用物理中矢量運(yùn)算及向量坐標(biāo)表示與運(yùn)算,我們知道:

    (1)若兩點(diǎn)等分單位圓時(shí),有相應(yīng)關(guān)系為:(2)四點(diǎn)等分單位圓時(shí),有相應(yīng)關(guān)系為:

    由此可以推知三等分單位圓時(shí)的相應(yīng)關(guān)系為:                                

    查看答案和解析>>

    附加題:(選做題:在下面A、B、C、D四個(gè)小題中只能選做兩題)
    A.選修4-1:幾何證明選講
    如圖,已知AB、CD是圓O的兩條弦,且AB是線段CD的垂直平分線,
    已知AB=6,CD=2,求線段AC的長(zhǎng)度.
    B.選修4-2:矩陣與變換
    已知二階矩陣A有特征值λ1=1及對(duì)應(yīng)的一個(gè)特征向量和特征值λ2=2及對(duì)應(yīng)的一個(gè)特征向量,試求矩陣A.
    C.選修4-4:坐標(biāo)系與參數(shù)方程
    在直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是(θ是參數(shù)),若以O(shè)為極點(diǎn),x軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長(zhǎng)度,建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.
    D.選修4-5:不等式選講
    已知關(guān)于x的不等式|ax-1|+|ax-a|≥1(a>0).
    (1)當(dāng)a=1時(shí),求此不等式的解集;
    (2)若此不等式的解集為R,求實(shí)數(shù)a的取值范圍.

    查看答案和解析>>

    附加題:(選做題:在下面A、B、C、D四個(gè)小題中只能選做兩題)
    A.選修4-1:幾何證明選講
    如圖,已知AB、CD是圓O的兩條弦,且AB是線段CD的垂直平分線,
    已知AB=6,CD=2
    5
    ,求線段AC的長(zhǎng)度.
    B.選修4-2:矩陣與變換
    已知二階矩陣A有特征值λ1=1及對(duì)應(yīng)的一個(gè)特征向量e1=
    1
    1
    和特征值λ2=2及對(duì)應(yīng)的一個(gè)特征向量e2=
    1
    0
    ,試求矩陣A.
    C.選修4-4:坐標(biāo)系與參數(shù)方程
    在直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
    y=sinθ+1
    x=cosθ
    (θ是參數(shù)),若以O(shè)為極點(diǎn),x軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長(zhǎng)度,建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.
    D.選修4-5:不等式選講
    已知關(guān)于x的不等式|ax-1|+|ax-a|≥1(a>0).
    (1)當(dāng)a=1時(shí),求此不等式的解集;
    (2)若此不等式的解集為R,求實(shí)數(shù)a的取值范圍.

    查看答案和解析>>

    一、選擇題:

    題號(hào)

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    答案

    C

    A

    D

    A

    B

    D

    B

    C

    B

    C

    D

    B

    1.提示:,故選C。

    2.提示:“任意的”否定為“存在”;“>”的否定為“”,故選A

    3.提示:,所以,故選D。

    4.提示:在AB上取點(diǎn)D,使得,則點(diǎn)P只能在AD內(nèi)運(yùn)動(dòng),則,

    5.提示:排除法選B。

    6.提示:由圖(1)改為圖(2)后每次循環(huán)時(shí)的值都為1,因此運(yùn)行過(guò)程出現(xiàn)無(wú)限循環(huán),故選D

    7.提示:由莖葉圖的定義,甲得分為7,8,9,15,19,23,24,26,32,41。共11個(gè)數(shù),19是中位數(shù),乙得分為5,7,11,11,13,20,22,30,31,40。共11個(gè)數(shù),13是中位數(shù)。

    故選B。

    8.提示:所以,故選C。

    9.提示:由

    如圖

    過(guò)A作于M,則

     .

    故選B.

    10.提示:不妨設(shè)點(diǎn)(2,0)與曲線上不同的三的點(diǎn)距離為分別,它們組成的等比數(shù)列的公比為若令,顯然,又所以,不能取到。故選B。

    11.提示:使用特值法:取集合當(dāng)可以排除A、B;

    取集合,當(dāng)可以排除C;故選D;

    12.提示:n棱柱有個(gè)頂點(diǎn),被平面截去一個(gè)三棱錐后,可以分以下6種情形(圖1~6)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    2在圖4,圖6所示的情形,還剩個(gè)頂點(diǎn);

    在圖5的情形,還剩個(gè)頂點(diǎn);

    在圖2,圖3的情形,還剩個(gè)頂點(diǎn);

    在圖1的情形,還剩下個(gè)頂點(diǎn).故選B.

    二、填空題:

    13.4   

    提示:

          由(1),(2)得,所以。

    14.   

    提示:斜率 ,切點(diǎn),所以切線方程為:

    15.

    提示:當(dāng)時(shí),不等式無(wú)解,當(dāng)時(shí),不等式變?yōu)?sub> ,

    由題意得,所以,

    16.

    三、解答題:

    17.解:① ∵的定義域?yàn)镽;

    ② ∵,

     ∴為偶函數(shù);

    ③ ∵,  ∴是周期為的周期函數(shù);

    ④ 當(dāng)時(shí),= ,

    ∴當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí),

    =,

    單調(diào)遞增;又∵是周期為的偶函數(shù),∴上單調(diào)遞增,在上單調(diào)遞減();

    ⑤ ∵當(dāng)時(shí);

    當(dāng)時(shí).∴的值域?yàn)?sub>;

     ⑥由以上性質(zhì)可得:上的圖象如圖所示:

     

     

     

     

    18.解:(Ⅰ)取PC的中點(diǎn)G,連結(jié)EG,GD,則

    由(Ⅰ)知FD⊥平面PDC,面PDC,所以FD⊥DG。

    所以四邊形FEGD為矩形,因?yàn)镚為等腰Rt△RPD斜邊PC的中點(diǎn),

    所以DG⊥PC,

          <td id="rjvax"><strong id="rjvax"></strong></td>
        • 所以DG⊥平面PBC.

          因?yàn)镈G//EF,所以EF⊥平面PBC。

          (Ⅱ) 

           

           

           

          19.解:(1)當(dāng) 時(shí),,則函數(shù)上是增函數(shù),故無(wú)極值;

          (2)。由及(1)只考慮的情況:

          x

          0

          +

          0

          -

          0

          +

          極大值

          極小值

          因此,函數(shù)在處取極小值,且

          ,所以

          (3)由(2)可知,函數(shù)內(nèi)都是增函數(shù),又函數(shù)內(nèi)是增函數(shù),則,由(2)時(shí)要使得不等式關(guān)于參數(shù)恒成立,必有,

          綜上:解得所以的取值范圍是

          20.解:

          分組

          頻數(shù)

          頻率

          50.5―60.5

          4

          0.08

          60.5―70.5

          8

          0.16

          70.5―80.5

          10

          0.20

          80.5―90.5

          16

          0.32

          90.5―100.5

          12

          0.24

          合計(jì)

          50

          1.00

          (1)

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          (3)成績(jī)?cè)?5.5-85.5分的的學(xué)生占70.5-80.5分的學(xué)生的,因?yàn)槌煽?jī)?cè)?0.5-80.5分的學(xué)生頻率為0.2,所以成績(jī)?cè)?5.5-80.5分的學(xué)生頻率為0.1,成績(jī)?cè)?0.5-85.5分的的學(xué)生占80.5-90.5分的學(xué)生的,因?yàn)槌煽?jī)?cè)?0.5-90.5分的學(xué)生頻率為0.32,所以成績(jī)?cè)?0.5-85.5分的學(xué)生頻率為0.16,所以成績(jī)?cè)?5.5-85.5分的學(xué)生頻率為0.26,由于有900名學(xué)生參加了這次競(jìng)賽,所以該校獲二等獎(jiǎng)的學(xué)生約為0.26900=234人

          21.解:(1)由已知,當(dāng)時(shí),

          ,

          當(dāng)時(shí),

          兩式相減得:

          當(dāng)時(shí),適合上式,

          (2)由(1)知

          當(dāng)時(shí),

          兩式相減得:

          ,則數(shù)列是等差數(shù)列,首項(xiàng)為1,公差為1。

          (3)

          要使得恒成立,

          恒成立,

          恒成立。

          當(dāng)為奇數(shù)時(shí),即恒成立,又的最小值為1,

          當(dāng)為偶數(shù)時(shí),即恒成立,又的最大值為

          為整數(shù),

          ,使得對(duì)任意,都有

          22.解:(1)由題意知

          解得,故

          所以函數(shù)在區(qū)間 上單調(diào)遞增。

          (2)由

          所以點(diǎn)G的坐標(biāo)為

          函數(shù)在區(qū)間 上單調(diào)遞增。

          所以當(dāng)時(shí),取得最小值,此時(shí)點(diǎn)F、G的坐標(biāo)分別為

          由題意設(shè)橢圓方程為,由于點(diǎn)G在橢圓上,得

          解得

          所以得所求的橢圓方程為。

          (3)設(shè)C,D的坐標(biāo)分別為,則

          ,得,

          因?yàn),點(diǎn)C、D在橢圓上,,

          消去。又,解得

          所以實(shí)數(shù)的取值范圍是