題目列表(包括答案和解析)
已知函數(shù)
(1) 若函數(shù)在
上單調(diào),求
的值;
(2)若函數(shù)在區(qū)間
上的最大值是
,求
的取值范圍.
【解析】第一問,
,
、
第二問中,
由(1)知: 當(dāng)時,
上單調(diào)遞增
滿足條件當(dāng)
時,
解: (1) ……3分
,
…………….7分
(2)
由(1)知: 當(dāng)時,
上單調(diào)遞增
滿足條件…………..10分
當(dāng)時,
且
…………13分
綜上所述:
已知函數(shù)在
處取得極值2.
⑴ 求函數(shù)的解析式;
⑵ 若函數(shù)在區(qū)間
上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
【解析】第一問中利用導(dǎo)數(shù)
又f(x)在x=1處取得極值2,所以,
所以
第二問中,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在
上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有
,得
解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以
,即
,所以
…………6分
⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在
上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有
,得
, …………9分
當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有
得
…………12分
.綜上所述,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)
時,f(x)在(m,2m+1)上單調(diào)遞減;則實(shí)數(shù)m的取值范圍是
或
如圖,,
,…,
,…是曲線
上的點(diǎn),
,
,…,
,…是
軸正半軸上的點(diǎn),且
,
,…,
,…
均為斜邊在
軸上的等腰直角三角形(
為坐標(biāo)原點(diǎn)).
(1)寫出、
和
之間的等量關(guān)系,以及
、
和
之間的等量關(guān)系;
(2)求證:(
);
(3)設(shè),對所有
,
恒成立,求實(shí)數(shù)
的取值范圍.
【解析】第一問利用有,
得到
第二問證明:①當(dāng)時,可求得
,命題成立;②假設(shè)當(dāng)
時,命題成立,即有
則當(dāng)
時,由歸納假設(shè)及
,
得
第三問
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間
上單調(diào)遞增,所以當(dāng)
時,
最大為
,即
解:(1)依題意,有,
,………………4分
(2)證明:①當(dāng)時,可求得
,命題成立;
……………2分
②假設(shè)當(dāng)時,命題成立,即有
,……………………1分
則當(dāng)時,由歸納假設(shè)及
,
得.
即
解得(
不合題意,舍去)
即當(dāng)時,命題成立. …………………………………………4分
綜上所述,對所有,
. ……………………………1分
(3)
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間
上單調(diào)遞增,所以當(dāng)
時,
最大為
,即
.……………2分
由題意,有.
所以,
設(shè)函數(shù)
(1)當(dāng)時,求曲線
處的切線方程;
(2)當(dāng)時,求
的極大值和極小值;
(3)若函數(shù)在區(qū)間
上是增函數(shù),求實(shí)數(shù)
的取值范圍.
【解析】(1)中,先利用,表示出點(diǎn)
的斜率值
這樣可以得到切線方程。(2)中,當(dāng)
,再令
,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了
在區(qū)間
導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當(dāng)……2分
∴
即為所求切線方程。………………4分
(2)當(dāng)
令………………6分
∴遞減,在(3,+
)遞增
∴的極大值為
…………8分
(3)
①若上單調(diào)遞增!酀M足要求。…10分
②若
∵恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實(shí)數(shù)
的取值范圍是
已知,函數(shù)
(1)當(dāng)時,求函數(shù)
在點(diǎn)(1,
)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個實(shí)數(shù)x0,使
>g(xo)成立,求正實(shí)數(shù)
的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)
時,
又
所以函數(shù)
在點(diǎn)(1,
)的切線方程為
;(2)中令
有
對a分類討論,和
得到極值。(3)中,設(shè)
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當(dāng)時,
又
∴ 函數(shù)在點(diǎn)(1,
)的切線方程為
--------4分
(Ⅱ)令 有
①
當(dāng)即
時
|
(-1,0) |
0 |
(0, |
|
( |
|
+ |
0 |
- |
0 |
+ |
|
|
極大值 |
|
極小值 |
|
故的極大值是
,極小值是
②
當(dāng)即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述 時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設(shè),
對求導(dǎo),得
∵,
∴ 在區(qū)間
上為增函數(shù),則
依題意,只需,即
解得 或
(舍去)
則正實(shí)數(shù)的取值范圍是(
,
)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com