題目列表(包括答案和解析)
(本題滿分14分)
已知實數(shù),曲線
與直線
的交點為
(異于原點
),在曲線
上取一點
,過點
作
平行于
軸,交直線
于點
,過點
作
平行于
軸,交曲線
于點
,接著過點
作
平行于
軸,交直線
于點
,過點
作
平行于
軸,交曲線
于點
,如此下去,可以得到點
,
,…,
,… . 設點
的坐標為
,
.
(Ⅰ)試用表示
,并證明
;
(Ⅱ)試證明,且
(
);
(本題滿分14分)
已知函數(shù)圖象上一點
處的切線方程為
.
(Ⅰ)求的值;
(Ⅱ)若方程在
內有兩個不等實根,求
的取值范圍(其中
為自然對數(shù)的底數(shù));
(Ⅲ)令,若
的圖象與
軸交于
,
(其中
),
的中點為
,求證:
在
處的導數(shù)
.
(本題滿分14分)
已知曲線方程為
,過原點O作曲線
的切線
(1)求的方程;
(2)求曲線,
及
軸圍成的圖形面積S;
(本題滿分14分)
已知中心在原點,對稱軸為坐標軸的橢圓,左焦點,一個頂點坐標為(0,1)
(1)求橢圓方程;
(2)直線過橢圓的右焦點
交橢圓于A、B兩點,當△AOB面積最大時,求直線
方程。
(本題滿分14分)
如圖,在直三棱柱中,
,
,求二面角
的大小。
一、選擇題(本大題共8小題,每小題5分,共40分)
1.B 2. D 3.B 4.B 5.A 6.A 7.C 8. A.
二、填空題(本大題共6小題,每小題5分,共30分)
9. 10. 4
11.
(2分),
(3分)
12. 13.
14.
15.
三、解答題(本大題共6小題,共80分)
16.(本題滿分10分)
解:(1)由向量共線有:
即,
4分
又,所以
,
則=
,即
6分
(2)由余弦定理得
則,
所以當且僅當
時等號成立 10分
所以.
12分
17.(本小題滿分12分)
解:(1)由已知條件得
2分
即,則
6分
答:的值為
.
(2)解:可能的取值為0,1,2,3 5分
6分
7分
8分
的分布列為:
0
1
2
3
10分
所以
12分
答:數(shù)學期望為.
18.(本小題滿分14分)
解:(1) 在△PAC中,∵PA=3,AC=4,PC=5,
∴
,∴
;……1分
又AB=4,PB=5,∴在△PAB中,
同理可得 …………………………2分
∵,∴
……3分
∵平面ABC,∴PA⊥BC. …………4分
(2) 如圖所示取PC的中點G,…………………5分
連結AG,BG,∵PF:FC=3:1,∴F為GC的中點
又D、E分別為BC、AC的中點,
∴AG∥EF,BG∥FD,又AG∩GB=G,EF∩FD=F,……………7分
∴面ABG∥面DEF.
即PC上的中點G為所求的點. …………… 9分
(3)由(2)知G這PC的中點,連結GE,∴GE⊥平面ABC,過E作EH⊥AB于H,連結GH,則GH⊥AB,∴∠EHG為二面角G-AB-C的平面角. …………… 11分
∵
又
∴
又
…………… 13分
∴
∴二面角G-AB-C的平面角的正切值為.
…………… 14分
19.(本小題滿分14分)
① 當時,
在
上單調遞減,
,
(舍去),所以,此時
無最小值. ……10分
③ 當時,
在
上單調遞減,
,
(舍去),所以,此時
無最小值.綜上,存在實數(shù)
,使得當
時
有最小值3.……14分
20.解(1)∵過(0,0)
則
|